Properties

Base field 6.6.300125.1
Label 6.6.300125.1-71.6-a1
Conductor \((71,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 13 a + 2)\)
Conductor norm \( 71 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a - 2\right) x y + \left(a^{5} - a^{4} - 6 a^{3} + a^{2} + 3 a\right) y = x^{3} + \left(-3 a^{5} + 2 a^{4} + 20 a^{3} + 3 a^{2} - 13 a - 1\right) x^{2} + \left(-a^{5} + 20 a^{4} - 20 a^{3} - 104 a^{2} + 46 a + 16\right) x - 403 a^{5} + 171 a^{4} + 2816 a^{3} + 961 a^{2} - 1694 a - 488 \)
magma: E := ChangeRing(EllipticCurve([-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 10*a - 2, -3*a^5 + 2*a^4 + 20*a^3 + 3*a^2 - 13*a - 1, a^5 - a^4 - 6*a^3 + a^2 + 3*a, -a^5 + 20*a^4 - 20*a^3 - 104*a^2 + 46*a + 16, -403*a^5 + 171*a^4 + 2816*a^3 + 961*a^2 - 1694*a - 488]),K);
 
sage: E = EllipticCurve(K, [-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 10*a - 2, -3*a^5 + 2*a^4 + 20*a^3 + 3*a^2 - 13*a - 1, a^5 - a^4 - 6*a^3 + a^2 + 3*a, -a^5 + 20*a^4 - 20*a^3 - 104*a^2 + 46*a + 16, -403*a^5 + 171*a^4 + 2816*a^3 + 961*a^2 - 1694*a - 488])
 
gp (2.8): E = ellinit([-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 10*a - 2, -3*a^5 + 2*a^4 + 20*a^3 + 3*a^2 - 13*a - 1, a^5 - a^4 - 6*a^3 + a^2 + 3*a, -a^5 + 20*a^4 - 20*a^3 - 104*a^2 + 46*a + 16, -403*a^5 + 171*a^4 + 2816*a^3 + 961*a^2 - 1694*a - 488],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((71,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 13 a + 2)\) = \( \left(-a^{4} + a^{3} + 6 a^{2} - a - 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 71 \) = \( 71 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((3255243551009881201,-2 a^{5} + 15 a^{3} + 10 a^{2} - 10 a + 587834443254305041,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 12 a + 2289817906731013443,-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 19 a + 860602312777624240,a + 2212245254177269548,-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a + 1168525495096135973)\) = \( \left(-a^{4} + a^{3} + 6 a^{2} - a - 4\right)^{10} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 3255243551009881201 \) = \( 71^{10} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{168897361086877089738292772}{3255243551009881201} a^{5} + \frac{36590815305412598961751628}{3255243551009881201} a^{4} + \frac{1215010113934663006249461026}{3255243551009881201} a^{3} + \frac{608534409345028127920951294}{3255243551009881201} a^{2} - \frac{728672484398001360842800916}{3255243551009881201} a - \frac{221646481326554190660944727}{3255243551009881201} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(\frac{31}{4} a^{5} - \frac{7}{4} a^{4} - \frac{227}{4} a^{3} - \frac{107}{4} a^{2} + \frac{163}{4} a + 11 : \frac{71}{8} a^{5} - \frac{15}{8} a^{4} - \frac{521}{8} a^{3} - \frac{251}{8} a^{2} + 44 a + \frac{111}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{4} + a^{3} + 6 a^{2} - a - 4\right) \) \(71\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.6-a consists of curves linked by isogenies of degree 2.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.