Properties

Base field 6.6.300125.1
Label 6.6.300125.1-71.4-c4
Conductor \((71,-2 a^{5} + 2 a^{4} + 13 a^{3} - 3 a^{2} - 8 a + 1)\)
Conductor norm \( 71 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(-3 a^{5} + 23 a^{3} + 14 a^{2} - 16 a - 6\right) x y + \left(a^{5} - 7 a^{3} - 5 a^{2} + 2 a + 3\right) y = x^{3} + \left(-3 a^{5} + 23 a^{3} + 14 a^{2} - 16 a - 5\right) x^{2} + \left(-42 a^{5} - 18 a^{4} + 323 a^{3} + 285 a^{2} - 118 a - 210\right) x + 84 a^{5} - 417 a^{4} - 158 a^{3} + 1621 a^{2} + 169 a - 898 \)
magma: E := ChangeRing(EllipticCurve([-3*a^5 + 23*a^3 + 14*a^2 - 16*a - 6, -3*a^5 + 23*a^3 + 14*a^2 - 16*a - 5, a^5 - 7*a^3 - 5*a^2 + 2*a + 3, -42*a^5 - 18*a^4 + 323*a^3 + 285*a^2 - 118*a - 210, 84*a^5 - 417*a^4 - 158*a^3 + 1621*a^2 + 169*a - 898]),K);
 
sage: E = EllipticCurve(K, [-3*a^5 + 23*a^3 + 14*a^2 - 16*a - 6, -3*a^5 + 23*a^3 + 14*a^2 - 16*a - 5, a^5 - 7*a^3 - 5*a^2 + 2*a + 3, -42*a^5 - 18*a^4 + 323*a^3 + 285*a^2 - 118*a - 210, 84*a^5 - 417*a^4 - 158*a^3 + 1621*a^2 + 169*a - 898])
 
gp (2.8): E = ellinit([-3*a^5 + 23*a^3 + 14*a^2 - 16*a - 6, -3*a^5 + 23*a^3 + 14*a^2 - 16*a - 5, a^5 - 7*a^3 - 5*a^2 + 2*a + 3, -42*a^5 - 18*a^4 + 323*a^3 + 285*a^2 - 118*a - 210, 84*a^5 - 417*a^4 - 158*a^3 + 1621*a^2 + 169*a - 898],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((71,-2 a^{5} + 2 a^{4} + 13 a^{3} - 3 a^{2} - 8 a + 1)\) = \( \left(6 a^{5} - 2 a^{4} - 43 a^{3} - 17 a^{2} + 29 a + 5\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 71 \) = \( 71 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((128100283921,-2 a^{5} + 15 a^{3} + 10 a^{2} - 10 a + 32213077914,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 12 a + 78493378987,-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 19 a + 117958450504,a + 121212964247,-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a + 28607177795)\) = \( \left(6 a^{5} - 2 a^{4} - 43 a^{3} - 17 a^{2} + 29 a + 5\right)^{6} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 128100283921 \) = \( 71^{6} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{122473963803363478904490388871087231}{128100283921} a^{5} + \frac{369584216037450793046353949556548449}{128100283921} a^{4} + \frac{111624163999057123131195127865875451}{128100283921} a^{3} - \frac{470167022871026850042855444550668562}{128100283921} a^{2} + \frac{91317277554701667937618786737072378}{128100283921} a + \frac{60701131070426909908677598532343306}{128100283921} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{21}{4} a^{5} - \frac{3}{2} a^{4} + \frac{83}{2} a^{3} + \frac{139}{4} a^{2} - \frac{105}{4} a - \frac{65}{4} : -\frac{13}{2} a^{5} + \frac{3}{8} a^{4} + \frac{385}{8} a^{3} + \frac{191}{8} a^{2} - \frac{215}{8} a - 13 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(6 a^{5} - 2 a^{4} - 43 a^{3} - 17 a^{2} + 29 a + 5\right) \) \(71\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.4-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.