Properties

Label 6.6.300125.1-71.4-c1
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{5}+8a^{3}+4a^{2}-7a-1\right){x}{y}+\left(-a^{5}+8a^{3}+4a^{2}-7a\right){y}={x}^{3}+\left(-6a^{5}+a^{4}+44a^{3}+23a^{2}-29a-11\right){x}^{2}+\left(24a^{5}-63a^{4}-44a^{3}+68a^{2}+5a-6\right){x}+297a^{5}-821a^{4}-439a^{3}+939a^{2}-86a-98\)
sage: E = EllipticCurve([K([-1,-7,4,8,0,-1]),K([-11,-29,23,44,1,-6]),K([0,-7,4,8,0,-1]),K([-6,5,68,-44,-63,24]),K([-98,-86,939,-439,-821,297])])
 
gp: E = ellinit([Polrev([-1,-7,4,8,0,-1]),Polrev([-11,-29,23,44,1,-6]),Polrev([0,-7,4,8,0,-1]),Polrev([-6,5,68,-44,-63,24]),Polrev([-98,-86,939,-439,-821,297])], K);
 
magma: E := EllipticCurve([K![-1,-7,4,8,0,-1],K![-11,-29,23,44,1,-6],K![0,-7,4,8,0,-1],K![-6,5,68,-44,-63,24],K![-98,-86,939,-439,-821,297]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((6a^5-2a^4-43a^3-17a^2+29a+5)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((18a^5-6a^4-128a^3-51a^2+79a+21)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{347779040612919069}{5041} a^{5} - \frac{735086186487273612}{5041} a^{4} - \frac{1615818198289203963}{5041} a^{3} + \frac{2495028141702981708}{5041} a^{2} - \frac{344156570897129140}{5041} a - \frac{312285111948345602}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-22 a^{5} + 4 a^{4} + 160 a^{3} + 81 a^{2} - 95 a - 29 : -98 a^{5} + 21 a^{4} + 706 a^{3} + 351 a^{2} - 420 a - 130 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 12723.959494764252722620040840363918388 \)
Tamagawa product: \( 2 \)
Torsion order: \(6\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((6a^5-2a^4-43a^3-17a^2+29a+5)\) \(71\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.4-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.