Properties

Base field 6.6.300125.1
Label 6.6.300125.1-71.3-c2
Conductor \((71,8 a^{5} - 2 a^{4} - 58 a^{3} - 27 a^{2} + 38 a + 10)\)
Conductor norm \( 71 \)
CM no
base-change no
Q-curve no
Torsion order \( 6 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(-6 a^{5} + 2 a^{4} + 43 a^{3} + 17 a^{2} - 28 a - 6\right) x y + \left(a^{5} - a^{4} - 6 a^{3} + a^{2} + 3 a - 1\right) y = x^{3} + \left(-a^{2} + a + 3\right) x^{2} + \left(8 a^{5} - a^{4} - 59 a^{3} - 34 a^{2} + 38 a + 18\right) x + 20 a^{5} - 5 a^{4} - 144 a^{3} - 69 a^{2} + 91 a + 29 \)
magma: E := ChangeRing(EllipticCurve([-6*a^5 + 2*a^4 + 43*a^3 + 17*a^2 - 28*a - 6, -a^2 + a + 3, a^5 - a^4 - 6*a^3 + a^2 + 3*a - 1, 8*a^5 - a^4 - 59*a^3 - 34*a^2 + 38*a + 18, 20*a^5 - 5*a^4 - 144*a^3 - 69*a^2 + 91*a + 29]),K);
 
sage: E = EllipticCurve(K, [-6*a^5 + 2*a^4 + 43*a^3 + 17*a^2 - 28*a - 6, -a^2 + a + 3, a^5 - a^4 - 6*a^3 + a^2 + 3*a - 1, 8*a^5 - a^4 - 59*a^3 - 34*a^2 + 38*a + 18, 20*a^5 - 5*a^4 - 144*a^3 - 69*a^2 + 91*a + 29])
 
gp (2.8): E = ellinit([-6*a^5 + 2*a^4 + 43*a^3 + 17*a^2 - 28*a - 6, -a^2 + a + 3, a^5 - a^4 - 6*a^3 + a^2 + 3*a - 1, 8*a^5 - a^4 - 59*a^3 - 34*a^2 + 38*a + 18, 20*a^5 - 5*a^4 - 144*a^3 - 69*a^2 + 91*a + 29],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((71,8 a^{5} - 2 a^{4} - 58 a^{3} - 27 a^{2} + 38 a + 10)\) = \( \left(-a^{5} + a^{4} + 7 a^{3} - 2 a^{2} - 7 a\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 71 \) = \( 71 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((71,-2 a^{5} + 15 a^{3} + 10 a^{2} - 10 a + 52,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 12 a + 8,-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 19 a + 4,a + 36,-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a + 40)\) = \( \left(-a^{5} + a^{4} + 7 a^{3} - 2 a^{2} - 7 a\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 71 \) = \( 71 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{8686953}{71} a^{5} + \frac{11816056}{71} a^{4} - \frac{25529599}{71} a^{3} - \frac{21656895}{71} a^{2} + 210469 a + \frac{5162701}{71} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/6\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-13 a^{5} + 3 a^{4} + 93 a^{3} + 46 a^{2} - 54 a - 16 : -35 a^{5} + 8 a^{4} + 250 a^{3} + 124 a^{2} - 143 a - 41 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{5} + a^{4} + 7 a^{3} - 2 a^{2} - 7 a\right) \) \(71\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.3-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.