Properties

Label 6.6.300125.1-71.3-c1
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-6a^{5}+a^{4}+44a^{3}+23a^{2}-28a-9\right){x}{y}+\left(a^{5}-7a^{3}-5a^{2}+3a+2\right){y}={x}^{3}+\left(3a^{5}-a^{4}-21a^{3}-10a^{2}+12a+6\right){x}^{2}+\left(301a^{5}-10a^{4}-2223a^{3}-1411a^{2}+1326a+389\right){x}+2885a^{5}-180a^{4}-21196a^{3}-12957a^{2}+12811a+3947\)
sage: E = EllipticCurve([K([-9,-28,23,44,1,-6]),K([6,12,-10,-21,-1,3]),K([2,3,-5,-7,0,1]),K([389,1326,-1411,-2223,-10,301]),K([3947,12811,-12957,-21196,-180,2885])])
 
gp: E = ellinit([Polrev([-9,-28,23,44,1,-6]),Polrev([6,12,-10,-21,-1,3]),Polrev([2,3,-5,-7,0,1]),Polrev([389,1326,-1411,-2223,-10,301]),Polrev([3947,12811,-12957,-21196,-180,2885])], K);
 
magma: E := EllipticCurve([K![-9,-28,23,44,1,-6],K![6,12,-10,-21,-1,3],K![2,3,-5,-7,0,1],K![389,1326,-1411,-2223,-10,301],K![3947,12811,-12957,-21196,-180,2885]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+a^4+7a^3-2a^2-7a)\) = \((-a^5+a^4+7a^3-2a^2-7a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-80a^5+9a^4+556a^3+381a^2-236a-169)\) = \((-a^5+a^4+7a^3-2a^2-7a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -128100283921 \) = \(-71^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{12188349191966910976545591421520911263}{128100283921} a^{5} + \frac{2795083691338226342388959981793334127}{128100283921} a^{4} + \frac{87472547643214485589591447553049289390}{128100283921} a^{3} + \frac{43036275357468336314681380908411365576}{128100283921} a^{2} - \frac{734527173722240035758902620347146720}{1804229351} a - \frac{15815145011644535445549863476994175471}{128100283921} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{29}{4} a^{5} - 5 a^{4} - \frac{187}{4} a^{3} - \frac{23}{4} a^{2} + \frac{67}{4} a + \frac{1}{4} : -33 a^{5} + \frac{87}{8} a^{4} + \frac{1861}{8} a^{3} + \frac{777}{8} a^{2} - \frac{1095}{8} a - \frac{333}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 17.453991076494173830754514184312645251 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+a^4+7a^3-2a^2-7a)\) \(71\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.3-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.