Properties

Label 6.6.300125.1-71.2-a2
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{5}+8a^{3}+5a^{2}-8a-2\right){x}{y}+\left(-3a^{5}+23a^{3}+14a^{2}-17a-6\right){y}={x}^{3}+\left(-3a^{5}+a^{4}+21a^{3}+8a^{2}-10a-2\right){x}^{2}+\left(-20a^{5}+4a^{4}+141a^{3}+70a^{2}-82a-32\right){x}+14a^{5}-46a^{4}-93a^{3}+229a^{2}+129a-177\)
sage: E = EllipticCurve([K([-2,-8,5,8,0,-1]),K([-2,-10,8,21,1,-3]),K([-6,-17,14,23,0,-3]),K([-32,-82,70,141,4,-20]),K([-177,129,229,-93,-46,14])])
 
gp: E = ellinit([Polrev([-2,-8,5,8,0,-1]),Polrev([-2,-10,8,21,1,-3]),Polrev([-6,-17,14,23,0,-3]),Polrev([-32,-82,70,141,4,-20]),Polrev([-177,129,229,-93,-46,14])], K);
 
magma: E := EllipticCurve([K![-2,-8,5,8,0,-1],K![-2,-10,8,21,1,-3],K![-6,-17,14,23,0,-3],K![-32,-82,70,141,4,-20],K![-177,129,229,-93,-46,14]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+14a^3+4a^2-9a-4)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-600a^5+158a^4+3837a^3+2872a^2-793a-1331)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3255243551009881201 \) = \(-71^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1668650325888148369768956}{3255243551009881201} a^{5} + \frac{5219910255636454759202144}{3255243551009881201} a^{4} + \frac{21392722809897168726356}{45848500718449031} a^{3} - \frac{6568705647496259706365286}{3255243551009881201} a^{2} + \frac{1274604017322331465353592}{3255243551009881201} a + \frac{846617325226222670995543}{3255243551009881201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{5}{2} a^{5} + 2 a^{4} + 17 a^{3} - a^{2} - \frac{55}{4} a + \frac{5}{2} : -\frac{1}{8} a^{5} + \frac{3}{8} a^{4} + \frac{7}{8} a^{3} - \frac{7}{8} a^{2} + \frac{1}{2} a - \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1348.5051518367487080175587843280379234 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.23075 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+14a^3+4a^2-9a-4)\) \(71\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.2-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.