Properties

Base field 6.6.300125.1
Label 6.6.300125.1-71.2-a2
Conductor \((71,6 a^{5} - 2 a^{4} - 42 a^{3} - 18 a^{2} + 23 a + 6)\)
Conductor norm \( 71 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(-a^{5} + 8 a^{3} + 5 a^{2} - 8 a - 2\right) x y + \left(-3 a^{5} + 23 a^{3} + 14 a^{2} - 17 a - 6\right) y = x^{3} + \left(-3 a^{5} + a^{4} + 21 a^{3} + 8 a^{2} - 10 a - 2\right) x^{2} + \left(-20 a^{5} + 4 a^{4} + 141 a^{3} + 70 a^{2} - 82 a - 32\right) x + 14 a^{5} - 46 a^{4} - 93 a^{3} + 229 a^{2} + 129 a - 177 \)
magma: E := ChangeRing(EllipticCurve([-a^5 + 8*a^3 + 5*a^2 - 8*a - 2, -3*a^5 + a^4 + 21*a^3 + 8*a^2 - 10*a - 2, -3*a^5 + 23*a^3 + 14*a^2 - 17*a - 6, -20*a^5 + 4*a^4 + 141*a^3 + 70*a^2 - 82*a - 32, 14*a^5 - 46*a^4 - 93*a^3 + 229*a^2 + 129*a - 177]),K);
 
sage: E = EllipticCurve(K, [-a^5 + 8*a^3 + 5*a^2 - 8*a - 2, -3*a^5 + a^4 + 21*a^3 + 8*a^2 - 10*a - 2, -3*a^5 + 23*a^3 + 14*a^2 - 17*a - 6, -20*a^5 + 4*a^4 + 141*a^3 + 70*a^2 - 82*a - 32, 14*a^5 - 46*a^4 - 93*a^3 + 229*a^2 + 129*a - 177])
 
gp (2.8): E = ellinit([-a^5 + 8*a^3 + 5*a^2 - 8*a - 2, -3*a^5 + a^4 + 21*a^3 + 8*a^2 - 10*a - 2, -3*a^5 + 23*a^3 + 14*a^2 - 17*a - 6, -20*a^5 + 4*a^4 + 141*a^3 + 70*a^2 - 82*a - 32, 14*a^5 - 46*a^4 - 93*a^3 + 229*a^2 + 129*a - 177],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((71,6 a^{5} - 2 a^{4} - 42 a^{3} - 18 a^{2} + 23 a + 6)\) = \( \left(-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 9 a - 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 71 \) = \( 71 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((3255243551009881201,-2 a^{5} + 15 a^{3} + 10 a^{2} - 10 a + 587834443254305041,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 12 a + 2289817906731013443,-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 19 a + 2394641238232256952,a + 77572652553743891,-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a + 384734592437036830)\) = \( \left(-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 9 a - 4\right)^{10} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 3255243551009881201 \) = \( 71^{10} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{1668650325888148369768956}{3255243551009881201} a^{5} + \frac{5219910255636454759202144}{3255243551009881201} a^{4} + \frac{21392722809897168726356}{45848500718449031} a^{3} - \frac{6568705647496259706365286}{3255243551009881201} a^{2} + \frac{1274604017322331465353592}{3255243551009881201} a + \frac{846617325226222670995543}{3255243551009881201} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{5}{2} a^{5} + 2 a^{4} + 17 a^{3} - a^{2} - \frac{55}{4} a + \frac{5}{2} : -\frac{1}{8} a^{5} + \frac{3}{8} a^{4} + \frac{7}{8} a^{3} - \frac{7}{8} a^{2} + \frac{1}{2} a - \frac{5}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 9 a - 4\right) \) \(71\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.2-a consists of curves linked by isogenies of degree 2.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.