Properties

Base field 6.6.300125.1
Label 6.6.300125.1-71.1-c3
Conductor \((71,-8 a^{5} + a^{4} + 58 a^{3} + 34 a^{2} - 34 a - 16)\)
Conductor norm \( 71 \)
CM no
base-change no
Q-curve no
Torsion order \( 6 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(-4 a^{5} + a^{4} + 29 a^{3} + 14 a^{2} - 20 a - 7\right) x y + \left(-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 19 a - 5\right) y = x^{3} + \left(a^{5} - a^{4} - 6 a^{3} + 2 a\right) x^{2} + \left(6 a^{5} - 19 a^{4} - 16 a^{3} + 68 a^{2} - 19 a - 13\right) x - 302 a^{5} + 643 a^{4} + 1380 a^{3} - 2136 a^{2} + 291 a + 268 \)
magma: E := ChangeRing(EllipticCurve([-4*a^5 + a^4 + 29*a^3 + 14*a^2 - 20*a - 7, a^5 - a^4 - 6*a^3 + 2*a, -4*a^5 + a^4 + 29*a^3 + 13*a^2 - 19*a - 5, 6*a^5 - 19*a^4 - 16*a^3 + 68*a^2 - 19*a - 13, -302*a^5 + 643*a^4 + 1380*a^3 - 2136*a^2 + 291*a + 268]),K);
 
sage: E = EllipticCurve(K, [-4*a^5 + a^4 + 29*a^3 + 14*a^2 - 20*a - 7, a^5 - a^4 - 6*a^3 + 2*a, -4*a^5 + a^4 + 29*a^3 + 13*a^2 - 19*a - 5, 6*a^5 - 19*a^4 - 16*a^3 + 68*a^2 - 19*a - 13, -302*a^5 + 643*a^4 + 1380*a^3 - 2136*a^2 + 291*a + 268])
 
gp (2.8): E = ellinit([-4*a^5 + a^4 + 29*a^3 + 14*a^2 - 20*a - 7, a^5 - a^4 - 6*a^3 + 2*a, -4*a^5 + a^4 + 29*a^3 + 13*a^2 - 19*a - 5, 6*a^5 - 19*a^4 - 16*a^3 + 68*a^2 - 19*a - 13, -302*a^5 + 643*a^4 + 1380*a^3 - 2136*a^2 + 291*a + 268],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((71,-8 a^{5} + a^{4} + 58 a^{3} + 34 a^{2} - 34 a - 16)\) = \( \left(4 a^{5} - a^{4} - 29 a^{3} - 13 a^{2} + 18 a + 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 71 \) = \( 71 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((5041,-2 a^{5} + 15 a^{3} + 10 a^{2} - 10 a + 1766,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 12 a + 837,-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 19 a + 3253,a + 1856,-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a + 2939)\) = \( \left(4 a^{5} - a^{4} - 29 a^{3} - 13 a^{2} + 18 a + 3\right)^{2} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 5041 \) = \( 71^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{756505033288550895}{5041} a^{5} + \frac{964582520701492616}{5041} a^{4} + \frac{5030225884885221547}{5041} a^{3} - \frac{2896578761117562289}{5041} a^{2} - \frac{4498828390434099007}{5041} a + \frac{2750417335307539161}{5041} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/6\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(10 a^{5} - 17 a^{4} - 52 a^{3} + 48 a^{2} + 2 a - 3 : -75 a^{5} + 161 a^{4} + 346 a^{3} - 555 a^{2} + 82 a + 71 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(4 a^{5} - a^{4} - 29 a^{3} - 13 a^{2} + 18 a + 3\right) \) \(71\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.