Properties

Base field 6.6.300125.1
Label 6.6.300125.1-71.1-b1
Conductor \((71,-8 a^{5} + a^{4} + 58 a^{3} + 34 a^{2} - 34 a - 16)\)
Conductor norm \( 71 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(a^{5} - 7 a^{3} - 5 a^{2} + 3 a + 2\right) x y + \left(-2 a^{5} + 15 a^{3} + 10 a^{2} - 9 a - 5\right) y = x^{3} + \left(-3 a^{5} + a^{4} + 21 a^{3} + 9 a^{2} - 11 a - 5\right) x^{2} + \left(78 a^{5} - 17 a^{4} - 560 a^{3} - 282 a^{2} + 331 a + 105\right) x - 183 a^{5} + 43 a^{4} + 1314 a^{3} + 637 a^{2} - 791 a - 228 \)
magma: E := ChangeRing(EllipticCurve([a^5 - 7*a^3 - 5*a^2 + 3*a + 2, -3*a^5 + a^4 + 21*a^3 + 9*a^2 - 11*a - 5, -2*a^5 + 15*a^3 + 10*a^2 - 9*a - 5, 78*a^5 - 17*a^4 - 560*a^3 - 282*a^2 + 331*a + 105, -183*a^5 + 43*a^4 + 1314*a^3 + 637*a^2 - 791*a - 228]),K);
 
sage: E = EllipticCurve(K, [a^5 - 7*a^3 - 5*a^2 + 3*a + 2, -3*a^5 + a^4 + 21*a^3 + 9*a^2 - 11*a - 5, -2*a^5 + 15*a^3 + 10*a^2 - 9*a - 5, 78*a^5 - 17*a^4 - 560*a^3 - 282*a^2 + 331*a + 105, -183*a^5 + 43*a^4 + 1314*a^3 + 637*a^2 - 791*a - 228])
 
gp (2.8): E = ellinit([a^5 - 7*a^3 - 5*a^2 + 3*a + 2, -3*a^5 + a^4 + 21*a^3 + 9*a^2 - 11*a - 5, -2*a^5 + 15*a^3 + 10*a^2 - 9*a - 5, 78*a^5 - 17*a^4 - 560*a^3 - 282*a^2 + 331*a + 105, -183*a^5 + 43*a^4 + 1314*a^3 + 637*a^2 - 791*a - 228],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((71,-8 a^{5} + a^{4} + 58 a^{3} + 34 a^{2} - 34 a - 16)\) = \( \left(4 a^{5} - a^{4} - 29 a^{3} - 13 a^{2} + 18 a + 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 71 \) = \( 71 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((5041,-2 a^{5} + 15 a^{3} + 10 a^{2} - 10 a + 1766,3 a^{5} - a^{4} - 21 a^{3} - 9 a^{2} + 12 a + 837,-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 19 a + 3253,a + 1856,-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a + 2939)\) = \( \left(4 a^{5} - a^{4} - 29 a^{3} - 13 a^{2} + 18 a + 3\right)^{2} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 5041 \) = \( 71^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{76660720898}{5041} a^{5} - \frac{40221525214}{5041} a^{4} + \frac{566215800511}{5041} a^{3} + \frac{1013166984912}{5041} a^{2} - \frac{649398492666}{5041} a - \frac{243375195538}{5041} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{25}{4} a^{5} + \frac{3}{4} a^{4} + \frac{91}{2} a^{3} + \frac{53}{2} a^{2} - \frac{111}{4} a - \frac{41}{4} : -\frac{17}{4} a^{5} + \frac{3}{2} a^{4} + 30 a^{3} + \frac{47}{4} a^{2} - \frac{145}{8} a - \frac{7}{2} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(4 a^{5} - a^{4} - 29 a^{3} - 13 a^{2} + 18 a + 3\right) \) \(71\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.1-b consists of curves linked by isogenies of degree 2.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.