Properties

Base field 6.6.300125.1
Label 6.6.300125.1-64.1-b1
Conductor \((2,-2)\)
Conductor norm \( 64 \)
CM no
base-change no
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 10 a - 2\right) x y + \left(-4 a^{5} + a^{4} + 29 a^{3} + 13 a^{2} - 18 a - 5\right) y = x^{3} + \left(7 a^{5} - 2 a^{4} - 50 a^{3} - 22 a^{2} + 32 a + 10\right) x^{2} + \left(11 a^{5} - 3 a^{4} - 79 a^{3} - 34 a^{2} + 51 a + 16\right) x + 7 a^{5} + a^{4} - 55 a^{3} - 37 a^{2} + 47 a + 8 \)
magma: E := ChangeRing(EllipticCurve([-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 10*a - 2, 7*a^5 - 2*a^4 - 50*a^3 - 22*a^2 + 32*a + 10, -4*a^5 + a^4 + 29*a^3 + 13*a^2 - 18*a - 5, 11*a^5 - 3*a^4 - 79*a^3 - 34*a^2 + 51*a + 16, 7*a^5 + a^4 - 55*a^3 - 37*a^2 + 47*a + 8]),K);
 
sage: E = EllipticCurve(K, [-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 10*a - 2, 7*a^5 - 2*a^4 - 50*a^3 - 22*a^2 + 32*a + 10, -4*a^5 + a^4 + 29*a^3 + 13*a^2 - 18*a - 5, 11*a^5 - 3*a^4 - 79*a^3 - 34*a^2 + 51*a + 16, 7*a^5 + a^4 - 55*a^3 - 37*a^2 + 47*a + 8])
 
gp (2.8): E = ellinit([-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 10*a - 2, 7*a^5 - 2*a^4 - 50*a^3 - 22*a^2 + 32*a + 10, -4*a^5 + a^4 + 29*a^3 + 13*a^2 - 18*a - 5, 11*a^5 - 3*a^4 - 79*a^3 - 34*a^2 + 51*a + 16, 7*a^5 + a^4 - 55*a^3 - 37*a^2 + 47*a + 8],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((2,-2)\) = \( \left(2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 64 \) = \( 64 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((256,-512 a^{5} + 3840 a^{3} + 2560 a^{2} - 2560 a - 1280,768 a^{5} - 256 a^{4} - 5376 a^{3} - 2304 a^{2} + 3072 a + 1024,-1024 a^{5} + 256 a^{4} + 7424 a^{3} + 3328 a^{2} - 4864 a - 1280,256 a,-512 a^{5} + 256 a^{4} + 3584 a^{3} + 1024 a^{2} - 2560 a - 512)\) = \( \left(2\right)^{8} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 281474976710656 \) = \( 64^{8} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{1323}{256} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2\right) \) \(64\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 64.1-b consists of this curve only.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.