Properties

Base field 6.6.300125.1
Label 6.6.300125.1-64.1-a2
Conductor \((2,-2)\)
Conductor norm \( 64 \)
CM no
base-change no
Q-curve yes
Torsion order \( 13 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + \left(-2 a^{5} + a^{4} + 14 a^{3} + 4 a^{2} - 9 a - 2\right) x y + \left(-6 a^{5} + 2 a^{4} + 43 a^{3} + 17 a^{2} - 29 a - 6\right) y = x^{3} + \left(-3 a^{5} + a^{4} + 21 a^{3} + 8 a^{2} - 10 a - 1\right) x^{2} + \left(-6 a^{5} + a^{4} + 43 a^{3} + 24 a^{2} - 24 a - 7\right) x - 10 a^{5} + 2 a^{4} + 72 a^{3} + 37 a^{2} - 42 a - 14 \)
magma: E := ChangeRing(EllipticCurve([-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 9*a - 2, -3*a^5 + a^4 + 21*a^3 + 8*a^2 - 10*a - 1, -6*a^5 + 2*a^4 + 43*a^3 + 17*a^2 - 29*a - 6, -6*a^5 + a^4 + 43*a^3 + 24*a^2 - 24*a - 7, -10*a^5 + 2*a^4 + 72*a^3 + 37*a^2 - 42*a - 14]),K);
 
sage: E = EllipticCurve(K, [-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 9*a - 2, -3*a^5 + a^4 + 21*a^3 + 8*a^2 - 10*a - 1, -6*a^5 + 2*a^4 + 43*a^3 + 17*a^2 - 29*a - 6, -6*a^5 + a^4 + 43*a^3 + 24*a^2 - 24*a - 7, -10*a^5 + 2*a^4 + 72*a^3 + 37*a^2 - 42*a - 14])
 
gp (2.8): E = ellinit([-2*a^5 + a^4 + 14*a^3 + 4*a^2 - 9*a - 2, -3*a^5 + a^4 + 21*a^3 + 8*a^2 - 10*a - 1, -6*a^5 + 2*a^4 + 43*a^3 + 17*a^2 - 29*a - 6, -6*a^5 + a^4 + 43*a^3 + 24*a^2 - 24*a - 7, -10*a^5 + 2*a^4 + 72*a^3 + 37*a^2 - 42*a - 14],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((2,-2)\) = \( \left(2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 64 \) = \( 64 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((2,-4 a^{5} + 30 a^{3} + 20 a^{2} - 20 a - 10,6 a^{5} - 2 a^{4} - 42 a^{3} - 18 a^{2} + 24 a + 8,-8 a^{5} + 2 a^{4} + 58 a^{3} + 26 a^{2} - 38 a - 10,2 a,-4 a^{5} + 2 a^{4} + 28 a^{3} + 8 a^{2} - 20 a - 4)\) = \( \left(2\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 64 \) = \( 64 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{189}{2} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/13\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(7 a^{5} - 2 a^{4} - 50 a^{3} - 22 a^{2} + 30 a + 8 : 6 a^{5} - 2 a^{4} - 43 a^{3} - 17 a^{2} + 29 a + 7 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2\right) \) \(64\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(13\) 13B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 13.
Its isogeny class 64.1-a consists of curves linked by isogenies of degree 13.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.