Properties

Base field 6.6.300125.1
Label 6.6.300125.1-49.1-a1
Conductor \((7,-5 a^{5} + a^{4} + 36 a^{3} + 19 a^{2} - 22 a - 6)\)
Conductor norm \( 49 \)
CM no
base-change no
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 7*a^4 + 2*a^3 + 7*a^2 - 2*a - 1);
 

Weierstrass equation

\( y^2 + y = x^{3} + \left(4 a^{5} - a^{4} - 29 a^{3} - 13 a^{2} + 19 a + 5\right) x^{2} + \left(120 a^{5} - 30 a^{4} - 870 a^{3} - 390 a^{2} + 570 a + 91\right) x + 408 a^{5} - 102 a^{4} - 2958 a^{3} - 1326 a^{2} + 1938 a + 324 \)
magma: E := ChangeRing(EllipticCurve([0, 4*a^5 - a^4 - 29*a^3 - 13*a^2 + 19*a + 5, 1, 120*a^5 - 30*a^4 - 870*a^3 - 390*a^2 + 570*a + 91, 408*a^5 - 102*a^4 - 2958*a^3 - 1326*a^2 + 1938*a + 324]),K);
 
sage: E = EllipticCurve(K, [0, 4*a^5 - a^4 - 29*a^3 - 13*a^2 + 19*a + 5, 1, 120*a^5 - 30*a^4 - 870*a^3 - 390*a^2 + 570*a + 91, 408*a^5 - 102*a^4 - 2958*a^3 - 1326*a^2 + 1938*a + 324])
 
gp (2.8): E = ellinit([0, 4*a^5 - a^4 - 29*a^3 - 13*a^2 + 19*a + 5, 1, 120*a^5 - 30*a^4 - 870*a^3 - 390*a^2 + 570*a + 91, 408*a^5 - 102*a^4 - 2958*a^3 - 1326*a^2 + 1938*a + 324],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((7,-5 a^{5} + a^{4} + 36 a^{3} + 19 a^{2} - 22 a - 6)\) = \( \left(a^{5} - a^{4} - 6 a^{3} + a^{2} + 2 a - 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 49 \) = \( 49 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((16807,-33614 a^{5} + 252105 a^{3} + 168070 a^{2} - 168070 a - 84035,50421 a^{5} - 16807 a^{4} - 352947 a^{3} - 151263 a^{2} + 201684 a + 67228,-67228 a^{5} + 16807 a^{4} + 487403 a^{3} + 218491 a^{2} - 319333 a - 84035,16807 a,-33614 a^{5} + 16807 a^{4} + 235298 a^{3} + 67228 a^{2} - 168070 a - 33614)\) = \( \left(a^{5} - a^{4} - 6 a^{3} + a^{2} + 2 a - 1\right)^{15} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 22539340290692258087863249 \) = \( 49^{15} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{2887553024}{16807} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{5} - a^{4} - 6 a^{3} + a^{2} + 2 a - 1\right) \) \(49\) \(1\) \(I_{15}\) Non-split multiplicative \(1\) \(1\) \(15\) \(15\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.4[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 49.1-a consists of curves linked by isogenies of degree 5.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.