Properties

Label 6.6.300125.1-1.1-a2
Base field 6.6.300125.1
Conductor norm \( 1 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 37 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+a^{4}+14a^{3}+4a^{2}-9a-2\right){x}{y}+\left(-5a^{5}+a^{4}+37a^{3}+18a^{2}-26a-7\right){y}={x}^{3}+\left(-3a^{5}+2a^{4}+20a^{3}+3a^{2}-12a\right){x}^{2}+\left(7a^{5}-a^{4}-51a^{3}-28a^{2}+27a+11\right){x}-13a^{5}+4a^{4}+92a^{3}+40a^{2}-56a-16\)
sage: E = EllipticCurve([K([-2,-9,4,14,1,-2]),K([0,-12,3,20,2,-3]),K([-7,-26,18,37,1,-5]),K([11,27,-28,-51,-1,7]),K([-16,-56,40,92,4,-13])])
 
gp: E = ellinit([Polrev([-2,-9,4,14,1,-2]),Polrev([0,-12,3,20,2,-3]),Polrev([-7,-26,18,37,1,-5]),Polrev([11,27,-28,-51,-1,7]),Polrev([-16,-56,40,92,4,-13])], K);
 
magma: E := EllipticCurve([K![-2,-9,4,14,1,-2],K![0,-12,3,20,2,-3],K![-7,-26,18,37,1,-5],K![11,27,-28,-51,-1,7],K![-16,-56,40,92,4,-13]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{37}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(0 : 6 a^{5} - a^{4} - 44 a^{3} - 23 a^{2} + 28 a + 9 : 1\right)$$0$$37$

Invariants

Conductor: $\frak{N}$ = \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $1$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 1 \) = 1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -9317 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 391404.46794104455867972617384800786307 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(37\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 0.521880 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 0.521880000 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 391404.467941 \cdot 1 \cdot 1 } { {37^2 \cdot 547.836654} } \approx 0.521880710$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are no primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(37\) 37B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 37.
Its isogeny class 1.1-a consists of curves linked by isogenies of degree 37.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{5}) \) 2.2.5.1-2401.1-c2

Additional information

This elliptic curve has everywhere good reduction and a rational point of order $37$.