Properties

Label 6.6.300125.1-1.1-a1
Base field 6.6.300125.1
Conductor norm \( 1 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+a^{4}+14a^{3}+4a^{2}-9a-2\right){x}{y}+\left(-5a^{5}+a^{4}+37a^{3}+18a^{2}-26a-7\right){y}={x}^{3}+\left(-3a^{5}+2a^{4}+20a^{3}+3a^{2}-12a\right){x}^{2}+\left(321037a^{5}-77286a^{4}-2300766a^{3}-1111743a^{2}+1379267a+398326\right){x}+54665451a^{5}-12782935a^{4}-392075036a^{3}-191607310a^{2}+234159226a+69935775\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([-2,-9,4,14,1,-2]),K([0,-12,3,20,2,-3]),K([-7,-26,18,37,1,-5]),K([398326,1379267,-1111743,-2300766,-77286,321037]),K([69935775,234159226,-191607310,-392075036,-12782935,54665451])])
 
Copy content gp:E = ellinit([Polrev([-2,-9,4,14,1,-2]),Polrev([0,-12,3,20,2,-3]),Polrev([-7,-26,18,37,1,-5]),Polrev([398326,1379267,-1111743,-2300766,-77286,321037]),Polrev([69935775,234159226,-191607310,-392075036,-12782935,54665451])], K);
 
Copy content magma:E := EllipticCurve([K![-2,-9,4,14,1,-2],K![0,-12,3,20,2,-3],K![-7,-26,18,37,1,-5],K![398326,1379267,-1111743,-2300766,-77286,321037],K![69935775,234159226,-191607310,-392075036,-12782935,54665451]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: $\frak{N}$ = \((1)\) = \((1)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 1 \) = 1
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $1$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((1)\) = \((1)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 1 \) = 1
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -162677523113838677 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 0.00015255113193989989393281650313636689198 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 0.521880 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1874161 \) (rounded)

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are no primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(37\) 37B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 37.
Its isogeny class 1.1-a consists of curves linked by isogenies of degree 37.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{5}) \) 2.2.5.1-2401.1-c1