Properties

Label 6.6.1397493.1-37.1-a1
Base field 6.6.1397493.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1397493.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 3 x^{4} + 10 x^{3} + 3 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, 3, 10, -3, -3, 1]))
 
gp: K = nfinit(Polrev([1, -6, 3, 10, -3, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 3, 10, -3, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-2a^{3}-2a^{2}+3a-1\right){x}{y}+\left(a^{3}-a^{2}-2a+1\right){y}={x}^{3}+\left(-a^{4}+2a^{3}+2a^{2}-3a+2\right){x}^{2}+\left(-4a^{4}+8a^{3}+9a^{2}-12a+2\right){x}-2a^{4}+3a^{3}+6a^{2}-4a\)
sage: E = EllipticCurve([K([-1,3,-2,-2,1,0]),K([2,-3,2,2,-1,0]),K([1,-2,-1,1,0,0]),K([2,-12,9,8,-4,0]),K([0,-4,6,3,-2,0])])
 
gp: E = ellinit([Polrev([-1,3,-2,-2,1,0]),Polrev([2,-3,2,2,-1,0]),Polrev([1,-2,-1,1,0,0]),Polrev([2,-12,9,8,-4,0]),Polrev([0,-4,6,3,-2,0])], K);
 
magma: E := EllipticCurve([K![-1,3,-2,-2,1,0],K![2,-3,2,2,-1,0],K![1,-2,-1,1,0,0],K![2,-12,9,8,-4,0],K![0,-4,6,3,-2,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+2a^3+3a^2-3a-2)\) = \((-a^4+2a^3+3a^2-3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^4-2a^3-3a^2+3a+2)\) = \((-a^4+2a^3+3a^2-3a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 37 \) = \(37\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{262024065}{37} a^{5} - \frac{632903382}{37} a^{4} - \frac{1156055733}{37} a^{3} + \frac{1944483489}{37} a^{2} + \frac{1922787234}{37} a - \frac{448205859}{37} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-1 : a^{4} - 3 a^{3} - a^{2} + 5 a - 1 : 1\right)$
Height \(0.072226456404329310128921794799595925436\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{3} a^{5} + \frac{4}{3} a^{4} - \frac{11}{3} a^{2} + \frac{2}{3} a + 1 : \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{8}{3} a^{3} + \frac{5}{3} a^{2} + \frac{13}{3} a - \frac{7}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.072226456404329310128921794799595925436 \)
Period: \( 56104.431173629457530300597071681500294 \)
Tamagawa product: \( 1 \)
Torsion order: \(3\)
Leading coefficient: \( 2.28521 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+2a^3+3a^2-3a-2)\) \(37\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 37.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.