Properties

Label 6.6.1397493.1-27.1-c2
Base field 6.6.1397493.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1397493.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 3 x^{4} + 10 x^{3} + 3 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, 3, 10, -3, -3, 1]))
 
gp: K = nfinit(Polrev([1, -6, 3, 10, -3, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 3, 10, -3, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-3a^{3}-a^{2}+7a-1\right){x}{y}+\left(a^{3}-a^{2}-2a\right){y}={x}^{3}+\left(-a^{5}+2a^{4}+7a^{3}-10a^{2}-13a+6\right){x}^{2}+\left(-2a^{4}+2a^{3}+5a^{2}-a+2\right){x}-1\)
sage: E = EllipticCurve([K([-1,7,-1,-3,1,0]),K([6,-13,-10,7,2,-1]),K([0,-2,-1,1,0,0]),K([2,-1,5,2,-2,0]),K([-1,0,0,0,0,0])])
 
gp: E = ellinit([Polrev([-1,7,-1,-3,1,0]),Polrev([6,-13,-10,7,2,-1]),Polrev([0,-2,-1,1,0,0]),Polrev([2,-1,5,2,-2,0]),Polrev([-1,0,0,0,0,0])], K);
 
magma: E := EllipticCurve([K![-1,7,-1,-3,1,0],K![6,-13,-10,7,2,-1],K![0,-2,-1,1,0,0],K![2,-1,5,2,-2,0],K![-1,0,0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+3a^4+3a^3-8a^2-6a)\) = \((a^3-a^2-3a)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^5-5a^4-8a^3+16a^2+11a-7)\) = \((a^3-a^2-3a)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 27 \) = \(3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -371835 a^{5} + 1522665 a^{4} - 988206 a^{3} - 1890837 a^{2} + 1592604 a - 238485 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(1 : a^{5} - 4 a^{4} + 10 a^{2} - 3 a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 19419.251898005011102910900023800419604 \)
Tamagawa product: \( 1 \)
Torsion order: \(3\)
Leading coefficient: \( 1.82522 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a)\) \(3\) \(1\) \(II\) Additive \(1\) \(3\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-c consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.