Properties

Label 6.6.1397493.1-27.1-b1
Base field 6.6.1397493.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1397493.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 3 x^{4} + 10 x^{3} + 3 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, 3, 10, -3, -3, 1]))
 
gp: K = nfinit(Polrev([1, -6, 3, 10, -3, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 3, 10, -3, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-3a^{4}-3a^{3}+9a^{2}+4a-3\right){x}{y}+\left(a^{5}-3a^{4}-2a^{3}+7a^{2}+2a\right){y}={x}^{3}+\left(a^{4}-2a^{3}-4a^{2}+4a+3\right){x}^{2}+\left(-2a^{5}+5a^{4}+7a^{3}-15a^{2}-6a+9\right){x}-a^{5}+4a^{4}+a^{3}-12a^{2}-2a+4\)
sage: E = EllipticCurve([K([-3,4,9,-3,-3,1]),K([3,4,-4,-2,1,0]),K([0,2,7,-2,-3,1]),K([9,-6,-15,7,5,-2]),K([4,-2,-12,1,4,-1])])
 
gp: E = ellinit([Polrev([-3,4,9,-3,-3,1]),Polrev([3,4,-4,-2,1,0]),Polrev([0,2,7,-2,-3,1]),Polrev([9,-6,-15,7,5,-2]),Polrev([4,-2,-12,1,4,-1])], K);
 
magma: E := EllipticCurve([K![-3,4,9,-3,-3,1],K![3,4,-4,-2,1,0],K![0,2,7,-2,-3,1],K![9,-6,-15,7,5,-2],K![4,-2,-12,1,4,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+3a^4+3a^3-8a^2-6a)\) = \((a^3-a^2-3a)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+3a^4+2a^3-8a^2+1)\) = \((a^3-a^2-3a)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 27 \) = \(3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -2106 a^{5} + 14985 a^{4} - 32940 a^{3} + 10125 a^{2} + 43254 a - 35397 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{5} - 3 a^{4} - 3 a^{3} + 9 a^{2} + 5 a - 3 : a^{5} - 2 a^{4} - 6 a^{3} + 8 a^{2} + 10 a - 4 : 1\right)$
Height \(0.065830368690868168517650299913733462601\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + 2 a^{2} - \frac{2}{3} a - \frac{4}{3} : \frac{1}{3} a^{4} - a^{3} + \frac{5}{3} a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.065830368690868168517650299913733462601 \)
Period: \( 96464.232124682849976451093936633584591 \)
Tamagawa product: \( 1 \)
Torsion order: \(3\)
Leading coefficient: \( 3.58118 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a)\) \(3\) \(1\) \(II\) Additive \(-1\) \(3\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.