Properties

Label 6.6.1397493.1-19.2-a2
Base field 6.6.1397493.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1397493.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 3 x^{4} + 10 x^{3} + 3 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, 3, 10, -3, -3, 1]))
 
gp: K = nfinit(Polrev([1, -6, 3, 10, -3, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 3, 10, -3, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-2a^{4}-6a^{3}+8a^{2}+10a-4\right){x}{y}+\left(a^{5}-3a^{4}-2a^{3}+7a^{2}+3a\right){y}={x}^{3}+\left(a^{5}-3a^{4}-2a^{3}+8a^{2}+2a-4\right){x}^{2}+\left(-47a^{5}+97a^{4}+278a^{3}-375a^{2}-479a+89\right){x}+342a^{5}-795a^{4}-1606a^{3}+2521a^{2}+2619a-626\)
sage: E = EllipticCurve([K([-4,10,8,-6,-2,1]),K([-4,2,8,-2,-3,1]),K([0,3,7,-2,-3,1]),K([89,-479,-375,278,97,-47]),K([-626,2619,2521,-1606,-795,342])])
 
gp: E = ellinit([Polrev([-4,10,8,-6,-2,1]),Polrev([-4,2,8,-2,-3,1]),Polrev([0,3,7,-2,-3,1]),Polrev([89,-479,-375,278,97,-47]),Polrev([-626,2619,2521,-1606,-795,342])], K);
 
magma: E := EllipticCurve([K![-4,10,8,-6,-2,1],K![-4,2,8,-2,-3,1],K![0,3,7,-2,-3,1],K![89,-479,-375,278,97,-47],K![-626,2619,2521,-1606,-795,342]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+1)\) = \((-a^2+a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-3a^4-3a^3+10a^2-4)\) = \((-a^2+a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6859 \) = \(19^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{23356303984655729540145}{6859} a^{5} - \frac{7452712481411092047777}{6859} a^{4} - \frac{90048979498873307140854}{6859} a^{3} - \frac{7850364710050201601979}{6859} a^{2} + \frac{49022773693222173695892}{6859} a - \frac{8712073558822488019641}{6859} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-8 a^{5} + 37 a^{4} - 18 a^{3} - 64 a^{2} + 27 a + 15 : 58 a^{5} - 310 a^{4} + 246 a^{3} + 462 a^{2} - 318 a - 8 : 1\right)$
Height \(2.7832754678052431182551784418928207657\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{2} a^{5} - \frac{23}{4} a^{4} - 12 a^{3} + \frac{37}{2} a^{2} + \frac{75}{4} a - 6 : -\frac{27}{8} a^{5} + \frac{67}{8} a^{4} + \frac{113}{8} a^{3} - \frac{199}{8} a^{2} - 24 a + \frac{15}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.7832754678052431182551784418928207657 \)
Period: \( 297.01761900594489122122193688557328121 \)
Tamagawa product: \( 3 \)
Torsion order: \(2\)
Leading coefficient: \( 3.14685 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+1)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 19.2-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.