Properties

Label 6.6.1397493.1-19.1-b3
Base field 6.6.1397493.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1397493.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 3 x^{4} + 10 x^{3} + 3 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, 3, 10, -3, -3, 1]))
 
gp: K = nfinit(Polrev([1, -6, 3, 10, -3, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 3, 10, -3, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-2a^{4}-6a^{3}+8a^{2}+10a-4\right){x}{y}={x}^{3}+\left(-a^{4}+3a^{3}+2a^{2}-7a-1\right){x}^{2}+\left(-32a^{5}+80a^{4}+132a^{3}-240a^{2}-212a+48\right){x}+31a^{5}-58a^{4}-195a^{3}+218a^{2}+361a-75\)
sage: E = EllipticCurve([K([-4,10,8,-6,-2,1]),K([-1,-7,2,3,-1,0]),K([0,0,0,0,0,0]),K([48,-212,-240,132,80,-32]),K([-75,361,218,-195,-58,31])])
 
gp: E = ellinit([Polrev([-4,10,8,-6,-2,1]),Polrev([-1,-7,2,3,-1,0]),Polrev([0,0,0,0,0,0]),Polrev([48,-212,-240,132,80,-32]),Polrev([-75,361,218,-195,-58,31])], K);
 
magma: E := EllipticCurve([K![-4,10,8,-6,-2,1],K![-1,-7,2,3,-1,0],K![0,0,0,0,0,0],K![48,-212,-240,132,80,-32],K![-75,361,218,-195,-58,31]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-3a^4-2a^3+8a^2+a-4)\) = \((a^5-3a^4-2a^3+8a^2+a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-3a^4-2a^3+8a^2+a-4)\) = \((a^5-3a^4-2a^3+8a^2+a-4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19 \) = \(19\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15934214875439431467}{19} a^{5} - \frac{65595149908150910652}{19} a^{4} + \frac{25442385660496971315}{19} a^{3} + \frac{130932604596100200840}{19} a^{2} - \frac{98399667624912226827}{19} a + \frac{14270008618918755090}{19} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(4 a^{5} - 12 a^{4} - 10 a^{3} + 32 a^{2} + 12 a - 2 : -2 a^{5} - 9 a^{4} + 60 a^{3} - 13 a^{2} - 129 a + 27 : 1\right)$
Height \(1.4142683831261262466023743022854746619\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{5} + \frac{9}{4} a^{4} - a^{3} - \frac{11}{2} a^{2} + \frac{15}{4} a + 1 : -\frac{11}{8} a^{5} + \frac{35}{8} a^{4} + \frac{21}{8} a^{3} - \frac{91}{8} a^{2} - \frac{5}{2} a + \frac{9}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.4142683831261262466023743022854746619 \)
Period: \( 1573.3512463617150873659705523147251804 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 2.82341 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-2a^3+8a^2+a-4)\) \(19\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 19.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.