Properties

Label 6.6.1397493.1-19.1-b1
Base field 6.6.1397493.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1397493.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 3 x^{4} + 10 x^{3} + 3 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, 3, 10, -3, -3, 1]))
 
gp: K = nfinit(Polrev([1, -6, 3, 10, -3, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 3, 10, -3, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-3a^{3}+5a-2\right){x}{y}+\left(a^{5}-3a^{4}-2a^{3}+7a^{2}+3a\right){y}={x}^{3}+\left(a^{5}-3a^{4}-4a^{3}+12a^{2}+4a-8\right){x}^{2}+\left(-38a^{5}+90a^{4}+175a^{3}-289a^{2}-287a+81\right){x}+203a^{5}-487a^{4}-910a^{3}+1515a^{2}+1510a-361\)
sage: E = EllipticCurve([K([-2,5,0,-3,1,0]),K([-8,4,12,-4,-3,1]),K([0,3,7,-2,-3,1]),K([81,-287,-289,175,90,-38]),K([-361,1510,1515,-910,-487,203])])
 
gp: E = ellinit([Polrev([-2,5,0,-3,1,0]),Polrev([-8,4,12,-4,-3,1]),Polrev([0,3,7,-2,-3,1]),Polrev([81,-287,-289,175,90,-38]),Polrev([-361,1510,1515,-910,-487,203])], K);
 
magma: E := EllipticCurve([K![-2,5,0,-3,1,0],K![-8,4,12,-4,-3,1],K![0,3,7,-2,-3,1],K![81,-287,-289,175,90,-38],K![-361,1510,1515,-910,-487,203]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-3a^4-2a^3+8a^2+a-4)\) = \((a^5-3a^4-2a^3+8a^2+a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-10a^5+30a^4+32a^3-95a^2-39a+24)\) = \((a^5-3a^4-2a^3+8a^2+a-4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 47045881 \) = \(19^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{164927433229853589}{47045881} a^{5} - \frac{462048753724117587}{47045881} a^{4} - \frac{586486265849135487}{47045881} a^{3} + \frac{1532873006546783733}{47045881} a^{2} + \frac{799015604456749284}{47045881} a - \frac{830982177318641229}{47045881} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(10 a^{5} - 39 a^{4} + 8 a^{3} + 81 a^{2} - 43 a + 8 : 80 a^{5} - 334 a^{4} + 144 a^{3} + 659 a^{2} - 528 a + 79 : 1\right)$
Height \(0.23571139718768770776706238371424577699\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{5} - 5 a^{4} - 9 a^{3} + 16 a^{2} + 15 a - 1 : -7 a^{5} + 19 a^{4} + 22 a^{3} - 50 a^{2} - 32 a + 9 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.23571139718768770776706238371424577699 \)
Period: \( 14160.161217255435786293734970832526624 \)
Tamagawa product: \( 6 \)
Torsion order: \(6\)
Leading coefficient: \( 2.82341 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-2a^3+8a^2+a-4)\) \(19\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 19.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.