Properties

Label 6.6.1387029.1-3.1-b3
Base field 6.6.1387029.1
Conductor norm \( 3 \)
CM no
Base change yes
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1387029.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 2 x^{4} + 9 x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 9, -2, -3, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 9, -2, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 9, -2, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-2a^{4}-4a^{3}+6a^{2}+3a-2\right){x}{y}+\left(-2a^{5}+5a^{4}+7a^{3}-14a^{2}-7a+4\right){y}={x}^{3}+\left(2a^{5}-5a^{4}-7a^{3}+15a^{2}+5a-4\right){x}^{2}+\left(41a^{5}-109a^{4}-117a^{3}+330a^{2}+60a-141\right){x}+121a^{5}-332a^{4}-332a^{3}+1007a^{2}+150a-448\)
sage: E = EllipticCurve([K([-2,3,6,-4,-2,1]),K([-4,5,15,-7,-5,2]),K([4,-7,-14,7,5,-2]),K([-141,60,330,-117,-109,41]),K([-448,150,1007,-332,-332,121])])
 
gp: E = ellinit([Polrev([-2,3,6,-4,-2,1]),Polrev([-4,5,15,-7,-5,2]),Polrev([4,-7,-14,7,5,-2]),Polrev([-141,60,330,-117,-109,41]),Polrev([-448,150,1007,-332,-332,121])], K);
 
magma: E := EllipticCurve([K![-2,3,6,-4,-2,1],K![-4,5,15,-7,-5,2],K![4,-7,-14,7,5,-2],K![-141,60,330,-117,-109,41],K![-448,150,1007,-332,-332,121]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-3a^4-2a^3+8a^2+a-2)\) = \((a^5-3a^4-2a^3+8a^2+a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3 \) = \(3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((20a^4-40a^3-81a^2+101a+149)\) = \((a^5-3a^4-2a^3+8a^2+a-2)^{24}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 282429536481 \) = \(3^{24}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1812669625}{531441} a^{4} - \frac{3625339250}{531441} a^{3} - \frac{7507399289}{531441} a^{2} + \frac{3106689638}{177147} a + \frac{9471919537}{531441} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a^{5} - 6 a^{4} - 8 a^{3} + 17 a^{2} + 3 a - 7 : -8 a^{5} + 5 a^{4} + 24 a^{3} - 11 a^{2} - 9 a + 4 : 1\right)$
Height \(0.032295029352541489273416794037330392981\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{5} - 3 a^{4} - 2 a^{3} + 9 a^{2} - 5 : 2 a^{5} - 5 a^{4} - 7 a^{3} + 15 a^{2} + 6 a - 5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.032295029352541489273416794037330392981 \)
Period: \( 2330.7226188986034672693628935905356940 \)
Tamagawa product: \( 24 \)
Torsion order: \(2\)
Leading coefficient: \( 2.30084 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-2a^3+8a^2+a-2)\) \(3\) \(24\) \(I_{24}\) Split multiplicative \(-1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 3.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
3.3.257.1 a curve with conductor norm 147 (not in the database)
3.3.257.1 3.3.257.1-9.2-b2