Properties

Label 6.6.1387029.1-3.1-a3
Base field 6.6.1387029.1
Conductor norm \( 3 \)
CM no
Base change yes
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1387029.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 2 x^{4} + 9 x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 9, -2, -3, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 9, -2, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 9, -2, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+5a^{4}+6a^{3}-13a^{2}-3a+4\right){x}{y}+\left(a^{5}-2a^{4}-4a^{3}+6a^{2}+3a-2\right){y}={x}^{3}+\left(-a^{5}+2a^{4}+3a^{3}-4a^{2}-2a\right){x}^{2}+\left(23a^{5}-67a^{4}-58a^{3}+211a^{2}+27a-93\right){x}+82a^{5}-231a^{4}-216a^{3}+712a^{2}+98a-317\)
sage: E = EllipticCurve([K([4,-3,-13,6,5,-2]),K([0,-2,-4,3,2,-1]),K([-2,3,6,-4,-2,1]),K([-93,27,211,-58,-67,23]),K([-317,98,712,-216,-231,82])])
 
gp: E = ellinit([Polrev([4,-3,-13,6,5,-2]),Polrev([0,-2,-4,3,2,-1]),Polrev([-2,3,6,-4,-2,1]),Polrev([-93,27,211,-58,-67,23]),Polrev([-317,98,712,-216,-231,82])], K);
 
magma: E := EllipticCurve([K![4,-3,-13,6,5,-2],K![0,-2,-4,3,2,-1],K![-2,3,6,-4,-2,1],K![-93,27,211,-58,-67,23],K![-317,98,712,-216,-231,82]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-3a^4-2a^3+8a^2+a-2)\) = \((a^5-3a^4-2a^3+8a^2+a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3 \) = \(3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((20a^4-40a^3-81a^2+101a+149)\) = \((a^5-3a^4-2a^3+8a^2+a-2)^{24}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 282429536481 \) = \(3^{24}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1812669625}{531441} a^{4} - \frac{3625339250}{531441} a^{3} - \frac{7507399289}{531441} a^{2} + \frac{3106689638}{177147} a + \frac{9471919537}{531441} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{5} - 5 a^{4} - 6 a^{3} + 14 a^{2} + 3 a - 6 : -3 a^{5} + 7 a^{4} + 10 a^{3} - 19 a^{2} - 5 a + 8 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2794.5449739841247883070991341980285240 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.18642 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-2a^3+8a^2+a-2)\) \(3\) \(2\) \(I_{24}\) Non-split multiplicative \(1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 3.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
3.3.257.1 a curve with conductor norm 147 (not in the database)
3.3.257.1 3.3.257.1-9.2-a2