\\ Pari/GP code for working with elliptic curve 6.6.1387029.1-27.1-p2 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the base number field: K = nfinit(Pol(Vecrev([1, -4, -1, 9, -2, -3, 1]))); \\ Define the curve: E = ellinit([Pol(Vecrev([1,-4,0,1,0,0])),Pol(Vecrev([-5,4,18,-9,-7,3])),Pol(Vecrev([2,0,-7,2,3,-1])),Pol(Vecrev([10,-31,16,40,-34,7])),Pol(Vecrev([29,-149,81,239,-232,53]))], K); \\ Compute the conductor: ellglobalred(E)[1] \\ Compute the norm of the conductor: idealnorm(ellglobalred(E)[1]) \\ Compute the discriminant: E.disc \\ Compute the norm of the discriminant: norm(E.disc) \\ Compute the j-invariant: E.j \\ Compute the torsion subgroup: T = elltors(E); T[2] \\ Compute the order of the torsion subgroup: T[1] \\ Compute the generators of the torsion subgroup: T[3]