Properties

Label 6.6.1387029.1-25.1-a1
Base field 6.6.1387029.1
Conductor norm \( 25 \)
CM no
Base change yes
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1387029.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 2 x^{4} + 9 x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 9, -2, -3, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 9, -2, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 9, -2, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+5a^{4}+6a^{3}-13a^{2}-3a+3\right){x}{y}+\left(a^{3}-3a\right){y}={x}^{3}+\left(2a^{5}-5a^{4}-6a^{3}+13a^{2}+5a-3\right){x}^{2}+\left(-573a^{5}+1301a^{4}+2097a^{3}-3636a^{2}-2073a+788\right){x}+3182a^{5}-7234a^{4}-11619a^{3}+20192a^{2}+11495a-4380\)
sage: E = EllipticCurve([K([3,-3,-13,6,5,-2]),K([-3,5,13,-6,-5,2]),K([0,-3,0,1,0,0]),K([788,-2073,-3636,2097,1301,-573]),K([-4380,11495,20192,-11619,-7234,3182])])
 
gp: E = ellinit([Polrev([3,-3,-13,6,5,-2]),Polrev([-3,5,13,-6,-5,2]),Polrev([0,-3,0,1,0,0]),Polrev([788,-2073,-3636,2097,1301,-573]),Polrev([-4380,11495,20192,-11619,-7234,3182])], K);
 
magma: E := EllipticCurve([K![3,-3,-13,6,5,-2],K![-3,5,13,-6,-5,2],K![0,-3,0,1,0,0],K![788,-2073,-3636,2097,1301,-573],K![-4380,11495,20192,-11619,-7234,3182]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-3a)\) = \((a^3-a^2-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-14a^4+28a^3+150a^2-164a+459)\) = \((a^3-a^2-3a)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 59604644775390625 \) = \(25^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{72134063979419}{244140625} a^{4} - \frac{144268127958838}{244140625} a^{3} - \frac{4976237481849}{244140625} a^{2} + \frac{77110301461268}{244140625} a - \frac{17613430193543}{244140625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{5} + 4 a^{4} - 2 a^{3} - 5 a^{2} + 2 a : -36 a^{5} + 76 a^{4} + 151 a^{3} - 239 a^{2} - 141 a + 54 : 1\right)$
Height \(0.15447431300235532200623930770860795219\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{23}{2} a^{5} - \frac{103}{4} a^{4} - 43 a^{3} + \frac{285}{4} a^{2} + \frac{177}{4} a - 15 : \frac{67}{4} a^{5} - \frac{151}{4} a^{4} - 62 a^{3} + \frac{213}{2} a^{2} + \frac{253}{4} a - \frac{195}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.15447431300235532200623930770860795219 \)
Period: \( 1109.1079557560972380386102210625184978 \)
Tamagawa product: \( 12 \)
Torsion order: \(2\)
Leading coefficient: \( 2.61854 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a)\) \(25\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 25.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
3.3.257.1 a curve with conductor norm 245 (not in the database)
3.3.257.1 3.3.257.1-45.2-a3