Properties

Label 6.6.1387029.1-21.1-b3
Base field 6.6.1387029.1
Conductor norm \( 21 \)
CM no
Base change yes
Q-curve no
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1387029.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 2 x^{4} + 9 x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 9, -2, -3, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 9, -2, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 9, -2, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-2a^{3}-2a^{2}+3a+1\right){x}{y}+\left(-2a^{5}+5a^{4}+6a^{3}-13a^{2}-4a+4\right){y}={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(a^{5}-2a^{4}-5a^{3}+9a^{2}+4a-8\right){x}-a^{4}+2a^{3}+4a^{2}-6a-2\)
sage: E = EllipticCurve([K([1,3,-2,-2,1,0]),K([-2,-1,1,0,0,0]),K([4,-4,-13,6,5,-2]),K([-8,4,9,-5,-2,1]),K([-2,-6,4,2,-1,0])])
 
gp: E = ellinit([Polrev([1,3,-2,-2,1,0]),Polrev([-2,-1,1,0,0,0]),Polrev([4,-4,-13,6,5,-2]),Polrev([-8,4,9,-5,-2,1]),Polrev([-2,-6,4,2,-1,0])], K);
 
magma: E := EllipticCurve([K![1,3,-2,-2,1,0],K![-2,-1,1,0,0,0],K![4,-4,-13,6,5,-2],K![-8,4,9,-5,-2,1],K![-2,-6,4,2,-1,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+5a^4+6a^3-14a^2-3a+4)\) = \((a^5-3a^4-2a^3+8a^2+a-2)\cdot(a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((40a^4-80a^3-175a^2+215a-156)\) = \((a^5-3a^4-2a^3+8a^2+a-2)^{16}\cdot(a^2-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 248155780267521 \) = \(3^{16}\cdot7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2469125117705}{15752961} a^{4} - \frac{4938250235410}{15752961} a^{3} - \frac{10256295035167}{15752961} a^{2} + \frac{605972388232}{750141} a + \frac{12380135655164}{15752961} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-15 a^{5} + 40 a^{4} + 42 a^{3} - 119 a^{2} - 21 a + 53 : 102 a^{5} - 278 a^{4} - 276 a^{3} + 830 a^{2} + 126 a - 365 : 1\right)$
Height \(0.29329893958700340519563533966270952350\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-a^{2} + a - 1 : a^{5} - a^{4} - 6 a^{3} + 5 a^{2} + 5 a - 2 : 1\right)$ $\left(a^{4} - 2 a^{3} - 5 a^{2} + 6 a + 6 : a^{5} - 8 a^{3} - 2 a^{2} + 13 a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.29329893958700340519563533966270952350 \)
Period: \( 5360.3214608904024833628377379960581376 \)
Tamagawa product: \( 32 \)  =  \(2^{4}\cdot2\)
Torsion order: \(8\)
Leading coefficient: \( 4.00479 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-2a^3+8a^2+a-2)\) \(3\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)
\((a^2-2)\) \(7\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 21.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
3.3.257.1 3.3.257.1-21.1-b4
3.3.257.1 a curve with conductor norm 441 (not in the database)