Properties

Label 6.6.1387029.1-21.1-a3
Base field 6.6.1387029.1
Conductor norm \( 21 \)
CM no
Base change yes
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1387029.1

Generator \(a\), with minimal polynomial \( x^{6} - 3 x^{5} - 2 x^{4} + 9 x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 9, -2, -3, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 9, -2, -3, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 9, -2, -3, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{4}+2a^{3}+2a^{2}-3a-1\right){x}^{2}+\left(13a^{4}-26a^{3}-35a^{2}+48a-14\right){x}+39a^{4}-78a^{3}-106a^{2}+145a-32\)
sage: E = EllipticCurve([K([-1,-1,1,0,0,0]),K([-1,-3,2,2,-1,0]),K([-1,-1,1,0,0,0]),K([-14,48,-35,-26,13,0]),K([-32,145,-106,-78,39,0])])
 
gp: E = ellinit([Polrev([-1,-1,1,0,0,0]),Polrev([-1,-3,2,2,-1,0]),Polrev([-1,-1,1,0,0,0]),Polrev([-14,48,-35,-26,13,0]),Polrev([-32,145,-106,-78,39,0])], K);
 
magma: E := EllipticCurve([K![-1,-1,1,0,0,0],K![-1,-3,2,2,-1,0],K![-1,-1,1,0,0,0],K![-14,48,-35,-26,13,0],K![-32,145,-106,-78,39,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+5a^4+6a^3-14a^2-3a+4)\) = \((a^5-3a^4-2a^3+8a^2+a-2)\cdot(a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((40a^4-80a^3-175a^2+215a-156)\) = \((a^5-3a^4-2a^3+8a^2+a-2)^{16}\cdot(a^2-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 248155780267521 \) = \(3^{16}\cdot7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2469125117705}{15752961} a^{4} - \frac{4938250235410}{15752961} a^{3} - \frac{10256295035167}{15752961} a^{2} + \frac{605972388232}{750141} a + \frac{12380135655164}{15752961} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-7 a^{5} + 9 a^{4} + 30 a^{3} - 12 a^{2} - 22 a + 9 : -50 a^{5} + 60 a^{4} + 214 a^{3} - 71 a^{2} - 117 a + 34 : 1\right)$
Height \(0.52307482150179035179576209282681854202\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{4} - 4 a^{3} - 6 a^{2} + 8 a + 1 : -a^{2} + a + 2 : 1\right)$ $\left(\frac{3}{4} a^{4} - \frac{3}{2} a^{3} - \frac{7}{4} a^{2} + \frac{5}{2} a - \frac{5}{4} : -\frac{1}{4} a^{4} + \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{3}{8} a + \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.52307482150179035179576209282681854202 \)
Period: \( 1118.9642602620879668378175197910417076 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2^{3}\)
Torsion order: \(4\)
Leading coefficient: \( 2.98186 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-2a^3+8a^2+a-2)\) \(3\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)
\((a^2-2)\) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
3.3.257.1 3.3.257.1-21.1-a3
3.3.257.1 a curve with conductor norm 441 (not in the database)