Properties

Label 6.6.1312625.1-4.1-a5
Base field 6.6.1312625.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1312625.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 7 x^{3} + 12 x^{2} - 12 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -12, 12, 7, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -12, 12, 7, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -12, 12, 7, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}+a^{4}-6a^{3}-4a^{2}+9a+1\right){x}{y}+\left(2a^{5}+a^{4}-13a^{3}-4a^{2}+20a+1\right){y}={x}^{3}+\left(a^{4}-6a^{2}-a+6\right){x}^{2}+\left(-3a^{5}-2a^{4}+23a^{3}+4a^{2}-39a+6\right){x}-a^{5}-4a^{4}+14a^{3}+11a^{2}-31a+1\)
sage: E = EllipticCurve([K([1,9,-4,-6,1,1]),K([6,-1,-6,0,1,0]),K([1,20,-4,-13,1,2]),K([6,-39,4,23,-2,-3]),K([1,-31,11,14,-4,-1])])
 
gp: E = ellinit([Polrev([1,9,-4,-6,1,1]),Polrev([6,-1,-6,0,1,0]),Polrev([1,20,-4,-13,1,2]),Polrev([6,-39,4,23,-2,-3]),Polrev([1,-31,11,14,-4,-1])], K);
 
magma: E := EllipticCurve([K![1,9,-4,-6,1,1],K![6,-1,-6,0,1,0],K![1,20,-4,-13,1,2],K![6,-39,4,23,-2,-3],K![1,-31,11,14,-4,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+6a^3+a^2-8a-2)\) = \((-a^5+6a^3+a^2-8a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5+a^4-9a^3-6a^2+16a+4)\) = \((-a^5+6a^3+a^2-8a-2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(4^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{670262627}{64} a^{5} + \frac{70906485}{32} a^{4} - \frac{1129214121}{16} a^{3} - \frac{785375223}{64} a^{2} + \frac{7077786823}{64} a + \frac{276135415}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(a^{5} - 8 a^{3} + a^{2} + 14 a - 3 : -a^{5} + 7 a^{3} + a^{2} - 11 a : 1\right)$ $\left(-\frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{7}{2} a^{3} + \frac{9}{4} a^{2} - \frac{21}{4} a - \frac{7}{4} : -\frac{5}{4} a^{5} - \frac{5}{8} a^{4} + \frac{33}{4} a^{3} + \frac{5}{2} a^{2} - \frac{99}{8} a - \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 11197.348885915551916931370938467701497 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.22167 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+6a^3+a^2-8a-2)\) \(4\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 4.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.