Properties

Label 6.6.1312625.1-4.1-a4
Base field 6.6.1312625.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1312625.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 7 x^{3} + 12 x^{2} - 12 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -12, 12, 7, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -12, 12, 7, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -12, 12, 7, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{5}+7a^{3}-11a+1\right){x}{y}+\left(2a^{5}+a^{4}-13a^{3}-4a^{2}+20a\right){y}={x}^{3}+\left(a^{5}+a^{4}-6a^{3}-5a^{2}+9a+3\right){x}^{2}+\left(-a^{3}-2a^{2}+2a+7\right){x}-2a^{5}-a^{4}+10a^{3}-13a+4\)
sage: E = EllipticCurve([K([1,-11,0,7,0,-1]),K([3,9,-5,-6,1,1]),K([0,20,-4,-13,1,2]),K([7,2,-2,-1,0,0]),K([4,-13,0,10,-1,-2])])
 
gp: E = ellinit([Polrev([1,-11,0,7,0,-1]),Polrev([3,9,-5,-6,1,1]),Polrev([0,20,-4,-13,1,2]),Polrev([7,2,-2,-1,0,0]),Polrev([4,-13,0,10,-1,-2])], K);
 
magma: E := EllipticCurve([K![1,-11,0,7,0,-1],K![3,9,-5,-6,1,1],K![0,20,-4,-13,1,2],K![7,2,-2,-1,0,0],K![4,-13,0,10,-1,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+6a^3+a^2-8a-2)\) = \((-a^5+6a^3+a^2-8a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^5+a^4-14a^3-4a^2+23a)\) = \((-a^5+6a^3+a^2-8a-2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 64 \) = \(4^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{8454711}{8} a^{5} + \frac{9161871}{8} a^{4} - \frac{10026795}{2} a^{3} - \frac{24417263}{8} a^{2} + \frac{25303849}{4} a + \frac{4058317}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{5} - \frac{3}{4} a^{4} + 3 a^{3} + \frac{7}{2} a^{2} - \frac{19}{4} a - \frac{9}{4} : -a^{5} - \frac{1}{8} a^{4} + 7 a^{3} + \frac{1}{2} a^{2} - \frac{91}{8} a + \frac{13}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 5598.6744429577759584656854692338507483 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.22167 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+6a^3+a^2-8a-2)\) \(4\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 4.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.