Properties

Label 6.6.1241125.1-405.2-m3
Base field 6.6.1241125.1
Conductor norm \( 405 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1241125.1

Generator \(a\), with minimal polynomial \( x^{6} - 7 x^{4} - 2 x^{3} + 11 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 11, -2, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, 7, 11, -2, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 11, -2, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-4a^{5}+2a^{4}+27a^{3}-4a^{2}-41a-12\right){x}{y}+\left(-4a^{5}+2a^{4}+27a^{3}-4a^{2}-42a-13\right){y}={x}^{3}+\left(-a^{3}+a^{2}+5a-2\right){x}^{2}+\left(-9a^{5}-5a^{4}+54a^{3}+38a^{2}-51a-35\right){x}-63a^{5}+16a^{4}+417a^{3}-4a^{2}-598a-155\)
sage: E = EllipticCurve([K([-12,-41,-4,27,2,-4]),K([-2,5,1,-1,0,0]),K([-13,-42,-4,27,2,-4]),K([-35,-51,38,54,-5,-9]),K([-155,-598,-4,417,16,-63])])
 
gp: E = ellinit([Polrev([-12,-41,-4,27,2,-4]),Polrev([-2,5,1,-1,0,0]),Polrev([-13,-42,-4,27,2,-4]),Polrev([-35,-51,38,54,-5,-9]),Polrev([-155,-598,-4,417,16,-63])], K);
 
magma: E := EllipticCurve([K![-12,-41,-4,27,2,-4],K![-2,5,1,-1,0,0],K![-13,-42,-4,27,2,-4],K![-35,-51,38,54,-5,-9],K![-155,-598,-4,417,16,-63]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-7a^3-2a^2+10a+7)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)\cdot(2a^5-a^4-14a^3+2a^2+23a+6)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 405 \) = \(5\cdot9^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-31a^5+23a^4+215a^3-68a^2-339a-91)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{5}\cdot(2a^5-a^4-14a^3+2a^2+23a+6)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1660753125 \) = \(5^{5}\cdot9^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{13681459876}{125} a^{5} - \frac{36187576902}{125} a^{4} + \frac{25331233773}{125} a^{3} + \frac{99876956003}{125} a^{2} + \frac{10695502109}{25} a + \frac{7259236048}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a^{5} - a^{4} - 21 a^{3} + 34 a + 14 : 20 a^{5} - 5 a^{4} - 135 a^{3} - 3 a^{2} + 204 a + 71 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 8255.6893739069702198802325059773302325 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 0.823385 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+13a^3-2a^2-19a-5)\) \(5\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((2a^5-a^4-14a^3+2a^2+23a+6)\) \(9\) \(1\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1
\(5\) 5B.4.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 405.2-m consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.