Properties

Label 6.6.1241125.1-25.2-b4
Base field 6.6.1241125.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1241125.1

Generator \(a\), with minimal polynomial \( x^{6} - 7 x^{4} - 2 x^{3} + 11 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 11, -2, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, 7, 11, -2, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 11, -2, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-3a^{5}+2a^{4}+20a^{3}-5a^{2}-30a-10\right){x}{y}+\left(-3a^{5}+a^{4}+20a^{3}-29a-12\right){y}={x}^{3}+\left(-6a^{5}+2a^{4}+41a^{3}-a^{2}-65a-21\right){x}^{2}+\left(-2a^{5}-3a^{4}+18a^{3}+16a^{2}-36a-16\right){x}-2a^{5}-2a^{4}+17a^{3}+16a^{2}-40a-20\)
sage: E = EllipticCurve([K([-10,-30,-5,20,2,-3]),K([-21,-65,-1,41,2,-6]),K([-12,-29,0,20,1,-3]),K([-16,-36,16,18,-3,-2]),K([-20,-40,16,17,-2,-2])])
 
gp: E = ellinit([Polrev([-10,-30,-5,20,2,-3]),Polrev([-21,-65,-1,41,2,-6]),Polrev([-12,-29,0,20,1,-3]),Polrev([-16,-36,16,18,-3,-2]),Polrev([-20,-40,16,17,-2,-2])], K);
 
magma: E := EllipticCurve([K![-10,-30,-5,20,2,-3],K![-21,-65,-1,41,2,-6],K![-12,-29,0,20,1,-3],K![-16,-36,16,18,-3,-2],K![-20,-40,16,17,-2,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+a^4+6a^3-4a^2-8a)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8a^5-a^4+57a^3+18a^2-99a-38)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1953125 \) = \(5^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3288568389824}{25} a^{5} - \frac{1515811489972}{25} a^{4} - \frac{22321293042632}{25} a^{3} + \frac{3711500587103}{25} a^{2} + \frac{6892701907756}{5} a + \frac{7134572445643}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{5} - 15 a^{3} - 3 a^{2} + 26 a + 11 : 9 a^{5} - a^{4} - 63 a^{3} - 10 a^{2} + 103 a + 44 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 25263.390455299292956200275628171386533 \)
Tamagawa product: \( 2 \)
Torsion order: \(5\)
Leading coefficient: \( 1.81415 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+13a^3-2a^2-19a-5)\) \(5\) \(2\) \(I_{3}^{*}\) Additive \(1\) \(2\) \(9\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 25.2-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.