Properties

Label 6.6.1241125.1-25.2-b3
Base field 6.6.1241125.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1241125.1

Generator \(a\), with minimal polynomial \( x^{6} - 7 x^{4} - 2 x^{3} + 11 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 11, -2, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, 7, 11, -2, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 11, -2, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+a^{4}+14a^{3}-a^{2}-23a-10\right){x}{y}+\left(-5a^{5}+2a^{4}+34a^{3}-2a^{2}-53a-18\right){y}={x}^{3}+\left(4a^{5}-a^{4}-28a^{3}-a^{2}+45a+16\right){x}^{2}+\left(4a^{5}-a^{4}-48a^{3}-8a^{2}+139a+64\right){x}+5a^{5}+11a^{4}-60a^{3}-66a^{2}+162a+80\)
sage: E = EllipticCurve([K([-10,-23,-1,14,1,-2]),K([16,45,-1,-28,-1,4]),K([-18,-53,-2,34,2,-5]),K([64,139,-8,-48,-1,4]),K([80,162,-66,-60,11,5])])
 
gp: E = ellinit([Polrev([-10,-23,-1,14,1,-2]),Polrev([16,45,-1,-28,-1,4]),Polrev([-18,-53,-2,34,2,-5]),Polrev([64,139,-8,-48,-1,4]),Polrev([80,162,-66,-60,11,5])], K);
 
magma: E := EllipticCurve([K![-10,-23,-1,14,1,-2],K![16,45,-1,-28,-1,4],K![-18,-53,-2,34,2,-5],K![64,139,-8,-48,-1,4],K![80,162,-66,-60,11,5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+a^4+6a^3-4a^2-8a)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-28a^5+20a^4+179a^3-55a^2-253a-75)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{11}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 48828125 \) = \(5^{11}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{13681459876}{125} a^{5} - \frac{36187576902}{125} a^{4} + \frac{25331233773}{125} a^{3} + \frac{99876956003}{125} a^{2} + \frac{10695502109}{25} a + \frac{7259236048}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 40.421424728478868729920441005074218454 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.81415 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+13a^3-2a^2-19a-5)\) \(5\) \(2\) \(I_{5}^{*}\) Additive \(1\) \(2\) \(11\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.4[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 25.2-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.