Properties

Label 6.6.1241125.1-25.2-a1
Base field 6.6.1241125.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1241125.1

Generator \(a\), with minimal polynomial \( x^{6} - 7 x^{4} - 2 x^{3} + 11 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 11, -2, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, 7, 11, -2, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 11, -2, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{5}+7a^{3}+2a^{2}-10a-6\right){x}{y}+\left(-5a^{5}+2a^{4}+34a^{3}-2a^{2}-53a-19\right){y}={x}^{3}+\left(2a^{5}-a^{4}-13a^{3}+2a^{2}+20a+5\right){x}^{2}+\left(-6a^{5}+2a^{4}+40a^{3}-60a-21\right){x}-5a^{5}+a^{4}+35a^{3}+3a^{2}-55a-24\)
sage: E = EllipticCurve([K([-6,-10,2,7,0,-1]),K([5,20,2,-13,-1,2]),K([-19,-53,-2,34,2,-5]),K([-21,-60,0,40,2,-6]),K([-24,-55,3,35,1,-5])])
 
gp: E = ellinit([Polrev([-6,-10,2,7,0,-1]),Polrev([5,20,2,-13,-1,2]),Polrev([-19,-53,-2,34,2,-5]),Polrev([-21,-60,0,40,2,-6]),Polrev([-24,-55,3,35,1,-5])], K);
 
magma: E := EllipticCurve([K![-6,-10,2,7,0,-1],K![5,20,2,-13,-1,2],K![-19,-53,-2,34,2,-5],K![-21,-60,0,40,2,-6],K![-24,-55,3,35,1,-5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+a^4+6a^3-4a^2-8a)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-a^2-3a+2)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 125 \) = \(5^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -2708 a^{5} + 733 a^{4} + 12894 a^{3} - 3948 a^{2} - 9886 a - 1842 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{5} + a^{4} + 13 a^{3} - 2 a^{2} - 20 a - 5 : -a^{5} + a^{4} + 6 a^{3} - 3 a^{2} - 9 a + 1 : 1\right)$
Height \(0.0089644533804967780913918391767011938020\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0089644533804967780913918391767011938020 \)
Period: \( 31253.004797552320406718629967556060877 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 3.01779 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+13a^3-2a^2-19a-5)\) \(5\) \(2\) \(III\) Additive \(-1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 25.2-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.