Properties

Label 5.5.81509.1-8.1-a2
Base field 5.5.81509.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-4a^{2}+3a+2\right){x}{y}+\left(a^{4}-a^{3}-3a^{2}+2a\right){y}={x}^{3}+\left(a^{3}-2a-1\right){x}^{2}+\left(21a^{4}-46a^{3}-50a^{2}+130a-40\right){x}+119a^{4}-252a^{3}-305a^{2}+697a-206\)
sage: E = EllipticCurve([K([2,3,-4,-1,1]),K([-1,-2,0,1,0]),K([0,2,-3,-1,1]),K([-40,130,-50,-46,21]),K([-206,697,-305,-252,119])])
 
gp: E = ellinit([Polrev([2,3,-4,-1,1]),Polrev([-1,-2,0,1,0]),Polrev([0,2,-3,-1,1]),Polrev([-40,130,-50,-46,21]),Polrev([-206,697,-305,-252,119])], K);
 
magma: E := EllipticCurve([K![2,3,-4,-1,1],K![-1,-2,0,1,0],K![0,2,-3,-1,1],K![-40,130,-50,-46,21],K![-206,697,-305,-252,119]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2-a+2)\) = \((a^2-2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-a^2-3a-2)\) = \((a^2-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -2403655604077 a^{4} + 5146535696608 a^{3} + 6145419251688 a^{2} - 14223680620576 a + 4212769815616 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{4} - \frac{11}{4} a^{3} - \frac{9}{4} a^{2} + \frac{29}{4} a - \frac{5}{2} : \frac{7}{4} a^{4} - \frac{29}{8} a^{3} - \frac{17}{4} a^{2} + \frac{21}{2} a - 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 415.69226609086580916558125979149605062 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 1.45602611 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 8.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.