Properties

Label 5.5.81509.1-2.1-a4
Base field 5.5.81509.1
Conductor norm \( 2 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}+1\right){x}{y}+\left(a^{3}-a^{2}-2a+2\right){y}={x}^{3}+\left(a^{4}-a^{3}-3a^{2}+3a\right){x}^{2}+\left(2a^{4}+10a^{3}-5a^{2}-21a-2\right){x}+6a^{4}+13a^{3}-14a^{2}-16a+8\)
sage: E = EllipticCurve([K([1,0,-4,0,1]),K([0,3,-3,-1,1]),K([2,-2,-1,1,0]),K([-2,-21,-5,10,2]),K([8,-16,-14,13,6])])
 
gp: E = ellinit([Polrev([1,0,-4,0,1]),Polrev([0,3,-3,-1,1]),Polrev([2,-2,-1,1,0]),Polrev([-2,-21,-5,10,2]),Polrev([8,-16,-14,13,6])], K);
 
magma: E := EllipticCurve([K![1,0,-4,0,1],K![0,3,-3,-1,1],K![2,-2,-1,1,0],K![-2,-21,-5,10,2],K![8,-16,-14,13,6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2)\) = \((a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2 \) = \(2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^4-11a^3-21a^2+12a+36)\) = \((a^2-2)^{24}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16777216 \) = \(2^{24}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{114072505235989}{16777216} a^{4} - \frac{309171459975735}{16777216} a^{3} - \frac{39987641649875}{16777216} a^{2} + \frac{409926565809581}{16777216} a - \frac{132882907511593}{16777216} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{1}{4} a^{4} + \frac{1}{2} a^{3} - \frac{11}{4} a^{2} - \frac{11}{4} a + \frac{3}{2} : \frac{3}{2} a^{4} + \frac{3}{2} a^{3} - \frac{11}{2} a^{2} - \frac{37}{8} a + \frac{7}{4} : 1\right)$ $\left(a^{4} - 7 a^{2} - a + 8 : 4 a^{4} - 20 a^{2} - 3 a + 18 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1184.0456033855884464590251822204687148 \)
Tamagawa product: \( 24 \)
Torsion order: \(8\)
Leading coefficient: \( 1.55523820 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(2\) \(24\) \(I_{24}\) Split multiplicative \(-1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 2.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.