Properties

Label 5.5.81509.1-16.2-c2
Base field 5.5.81509.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{4}-4a^{2}-a+2\right){y}={x}^{3}+\left(a^{4}-2a^{3}-2a^{2}+6a-2\right){x}^{2}+\left(-3a^{4}+2a^{3}+9a^{2}-7a-2\right){x}+a^{3}-2a^{2}-4a+4\)
sage: E = EllipticCurve([K([-2,0,1,0,0]),K([-2,6,-2,-2,1]),K([2,-1,-4,0,1]),K([-2,-7,9,2,-3]),K([4,-4,-2,1,0])])
 
gp: E = ellinit([Polrev([-2,0,1,0,0]),Polrev([-2,6,-2,-2,1]),Polrev([2,-1,-4,0,1]),Polrev([-2,-7,9,2,-3]),Polrev([4,-4,-2,1,0])], K);
 
magma: E := EllipticCurve([K![-2,0,1,0,0],K![-2,6,-2,-2,1],K![2,-1,-4,0,1],K![-2,-7,9,2,-3],K![4,-4,-2,1,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+a+2)\) = \((a^2-2)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-a^2-3a-2)\) = \((a^2-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -2403655604077 a^{4} + 5146535696608 a^{3} + 6145419251688 a^{2} - 14223680620576 a + 4212769815616 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - a^{2} - 3 a + 3 : -a^{4} + 3 a^{2} - 1 : 1\right)$
Height \(0.045520629997451091339487948291129765063\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a^{4} + a^{3} - 3 a + 2 : -\frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{3}{2} a^{2} - \frac{3}{8} a + \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.045520629997451091339487948291129765063 \)
Period: \( 6017.8618773791564117083814842195959153 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.39876501 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(2\) \(2\) \(I_0^{*}\) Additive \(1\) \(4\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 16.2-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.