Properties

Label 5.5.81509.1-16.2-a12
Base field 5.5.81509.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-2\right){x}{y}={x}^{3}+\left(a^{4}-6a^{2}-2a+6\right){x}^{2}+\left(-422a^{4}+286a^{3}+2161a^{2}-489a-2237\right){x}+6514a^{4}-3548a^{3}-35312a^{2}+6188a+36728\)
sage: E = EllipticCurve([K([-2,1,1,0,0]),K([6,-2,-6,0,1]),K([0,0,0,0,0]),K([-2237,-489,2161,286,-422]),K([36728,6188,-35312,-3548,6514])])
 
gp: E = ellinit([Polrev([-2,1,1,0,0]),Polrev([6,-2,-6,0,1]),Polrev([0,0,0,0,0]),Polrev([-2237,-489,2161,286,-422]),Polrev([36728,6188,-35312,-3548,6514])], K);
 
magma: E := EllipticCurve([K![-2,1,1,0,0],K![6,-2,-6,0,1],K![0,0,0,0,0],K![-2237,-489,2161,286,-422],K![36728,6188,-35312,-3548,6514]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+a+2)\) = \((a^2-2)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^4-a^3+7a^2+10a)\) = \((a^2-2)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16384 \) = \(2^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1106260209896765075720017449977}{4} a^{4} - \frac{695987117739716713338897632211}{4} a^{3} - \frac{5789418248621984721575448431631}{4} a^{2} + \frac{1171688557315894313385270125441}{4} a + \frac{5965839219757419929153325061103}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(5 a^{4} - 13 a^{3} - 11 a^{2} + 27 a + 17 : 42 a^{4} - 64 a^{3} - 98 a^{2} + 50 a + 16 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 89.626047065023652891027579817304403774 \)
Tamagawa product: \( 4 \)
Torsion order: \(4\)
Leading coefficient: \( 1.25571607 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(2\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(4\) \(14\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 16.2-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.