Properties

Label 5.5.81509.1-16.1-b1
Base field 5.5.81509.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{4}-5a^{2}+3\right){y}={x}^{3}+\left(-a^{4}+6a^{2}-5\right){x}^{2}+\left(-a^{4}+4a^{2}-1\right){x}+3a^{4}-4a^{3}-13a^{2}+9a+8\)
sage: E = EllipticCurve([K([0,1,0,0,0]),K([-5,0,6,0,-1]),K([3,0,-5,0,1]),K([-1,0,4,0,-1]),K([8,9,-13,-4,3])])
 
gp: E = ellinit([Polrev([0,1,0,0,0]),Polrev([-5,0,6,0,-1]),Polrev([3,0,-5,0,1]),Polrev([-1,0,4,0,-1]),Polrev([8,9,-13,-4,3])], K);
 
magma: E := EllipticCurve([K![0,1,0,0,0],K![-5,0,6,0,-1],K![3,0,-5,0,1],K![-1,0,4,0,-1],K![8,9,-13,-4,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+3a^2-a+1)\) = \((-a^4+a^3+3a^2-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(16\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+3a^3-a^2-9a+5)\) = \((-a^4+a^3+3a^2-a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(16^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{379889489881}{8} a^{4} + \frac{239001814759}{8} a^{3} + \frac{1988084838775}{8} a^{2} - \frac{402357578969}{8} a - \frac{1024333880847}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - 2 a^{2} - 3 a + 4 : -2 a^{4} + 3 a^{3} + 7 a^{2} - 8 a : 1\right)$
Height \(0.026204891326089973393641936270323762003\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.026204891326089973393641936270323762003 \)
Period: \( 4675.3226171815518890334638721595792325 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.14566130 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+3a^2-a+1)\) \(16\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 16.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.