Properties

Label 5.5.81509.1-16.1-a1
Base field 5.5.81509.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-5a^{2}+4\right){x}{y}+\left(a^{3}-2a-1\right){y}={x}^{3}+\left(-a^{4}+6a^{2}-6\right){x}^{2}+\left(-583a^{4}+549a^{3}+2605a^{2}-836a-2545\right){x}-10426a^{4}+9362a^{3}+47928a^{2}-14450a-47312\)
sage: E = EllipticCurve([K([4,0,-5,0,1]),K([-6,0,6,0,-1]),K([-1,-2,0,1,0]),K([-2545,-836,2605,549,-583]),K([-47312,-14450,47928,9362,-10426])])
 
gp: E = ellinit([Polrev([4,0,-5,0,1]),Polrev([-6,0,6,0,-1]),Polrev([-1,-2,0,1,0]),Polrev([-2545,-836,2605,549,-583]),Polrev([-47312,-14450,47928,9362,-10426])], K);
 
magma: E := EllipticCurve([K![4,0,-5,0,1],K![-6,0,6,0,-1],K![-1,-2,0,1,0],K![-2545,-836,2605,549,-583],K![-47312,-14450,47928,9362,-10426]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+3a^2-a+1)\) = \((-a^4+a^3+3a^2-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(16\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^4+5a^3-7a^2-7a-5)\) = \((-a^4+a^3+3a^2-a+1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1048576 \) = \(16^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4298181135954522099}{32} a^{4} - \frac{9202957876278990529}{32} a^{3} - \frac{10989147450090029181}{32} a^{2} + \frac{25434572271835308575}{32} a - \frac{3766605489474797263}{16} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.3661829797081729906313585368384161307 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 0.598158255 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+3a^2-a+1)\) \(16\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 16.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.