Properties

Label 5.5.70601.1-9.1-b4
Base field 5.5.70601.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 10 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-10a^{2}+4\right){x}{y}+\left(2a^{4}-a^{3}-10a^{2}+4\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-1\right){x}^{2}+\left(100a^{4}-74a^{3}-514a^{2}+54a+291\right){x}+8a^{4}+8a^{3}-63a^{2}-51a+75\)
sage: E = EllipticCurve([K([4,0,-10,-1,2]),K([-1,3,1,-1,0]),K([4,0,-10,-1,2]),K([291,54,-514,-74,100]),K([75,-51,-63,8,8])])
 
gp: E = ellinit([Polrev([4,0,-10,-1,2]),Polrev([-1,3,1,-1,0]),Polrev([4,0,-10,-1,2]),Polrev([291,54,-514,-74,100]),Polrev([75,-51,-63,8,8])], K);
 
magma: E := EllipticCurve([K![4,0,-10,-1,2],K![-1,3,1,-1,0],K![4,0,-10,-1,2],K![291,54,-514,-74,100],K![75,-51,-63,8,8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a)\) = \((-a^3+a^2+4a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-13a^4+22a^3+78a^2-17a-98)\) = \((-a^3+a^2+4a)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3486784401 \) = \(9^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{8901429979126}{59049} a^{4} + \frac{16455365224771}{59049} a^{3} + \frac{30554549264677}{59049} a^{2} - \frac{43774816239536}{59049} a + \frac{10480360169644}{59049} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(44 a^{4} - 29 a^{3} - 231 a^{2} + 11 a + 139 : -560 a^{4} + 380 a^{3} + 2921 a^{2} - 180 a - 1734 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 849.94950168879556114980664605565331354 \)
Tamagawa product: \( 10 \)
Torsion order: \(10\)
Leading coefficient: \( 1.27952180 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(9\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.