Properties

Label 5.5.70601.1-9.1-b2
Base field 5.5.70601.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-6a^{2}-2a+4\right){x}{y}+\left(a^{4}-6a^{2}-2a+4\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a\right){x}^{2}+\left(-160a^{4}+15a^{3}+634a^{2}-12a-373\right){x}-1777a^{4}-692a^{3}+5689a^{2}+563a-3148\)
sage: E = EllipticCurve([K([4,-2,-6,0,1]),K([0,3,1,-1,0]),K([4,-2,-6,0,1]),K([-373,-12,634,15,-160]),K([-3148,563,5689,-692,-1777])])
 
gp: E = ellinit([Polrev([4,-2,-6,0,1]),Polrev([0,3,1,-1,0]),Polrev([4,-2,-6,0,1]),Polrev([-373,-12,634,15,-160]),Polrev([-3148,563,5689,-692,-1777])], K);
 
magma: E := EllipticCurve([K![4,-2,-6,0,1],K![0,3,1,-1,0],K![4,-2,-6,0,1],K![-373,-12,634,15,-160],K![-3148,563,5689,-692,-1777]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a)\) = \((-a^3+a^2+4a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+a^2+4a)\) = \((-a^3+a^2+4a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 9 \) = \(9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5509279887890632}{3} a^{4} - \frac{20491442675990639}{3} a^{3} + \frac{10059517521112475}{3} a^{2} + 6420413926184387 a - \frac{6356914243347758}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{4} + 4 a^{3} + 16 a^{2} - 6 a - 11 : 6 a^{4} - 6 a^{3} - 31 a^{2} + 4 a + 16 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.1758707243233166365435050139024724826 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.27952180 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(9\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.