Properties

Label 5.5.70601.1-9.1-b1
Base field 5.5.70601.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-10a^{2}+4\right){x}{y}+\left(2a^{4}-a^{3}-10a^{2}+4\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-1\right){x}^{2}+\left(-10860a^{4}+7306a^{3}+56621a^{2}-3366a-33769\right){x}-719344a^{4}+486907a^{3}+3752939a^{2}-228180a-2231590\)
sage: E = EllipticCurve([K([4,0,-10,-1,2]),K([-1,3,1,-1,0]),K([4,0,-10,-1,2]),K([-33769,-3366,56621,7306,-10860]),K([-2231590,-228180,3752939,486907,-719344])])
 
gp: E = ellinit([Polrev([4,0,-10,-1,2]),Polrev([-1,3,1,-1,0]),Polrev([4,0,-10,-1,2]),Polrev([-33769,-3366,56621,7306,-10860]),Polrev([-2231590,-228180,3752939,486907,-719344])], K);
 
magma: E := EllipticCurve([K![4,0,-10,-1,2],K![-1,3,1,-1,0],K![4,0,-10,-1,2],K![-33769,-3366,56621,7306,-10860],K![-2231590,-228180,3752939,486907,-719344]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a)\) = \((-a^3+a^2+4a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-a^3-10a^2+4)\) = \((-a^3+a^2+4a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 81 \) = \(9^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1241019728491478667854287148915537}{9} a^{4} - \frac{3466470975193904516888121233549840}{9} a^{3} + \frac{11129815715759114365727588897188}{9} a^{2} + \frac{2462080981149287745534356743321450}{9} a - \frac{692052889851961102412512823946311}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{143}{2} a^{4} - \frac{203}{4} a^{3} - \frac{1499}{4} a^{2} + \frac{65}{2} a + \frac{899}{4} : -\frac{889}{8} a^{4} + \frac{603}{8} a^{3} + \frac{4661}{8} a^{2} - \frac{215}{8} a - \frac{1371}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.27198384054041457956793812673780906033 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.27952180 \)
Analytic order of Ш: \( 2500 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(9\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.