Properties

Label 5.5.70601.1-7.1-a2
Base field 5.5.70601.1
Conductor norm \( 7 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-2a^{3}-9a^{2}+4a+3\right){x}{y}+\left(a^{4}-a^{3}-5a^{2}+2a+2\right){y}={x}^{3}+\left(a^{4}-7a^{2}+5\right){x}^{2}+\left(6a^{4}-4a^{3}-29a^{2}-2a+20\right){x}+5a^{4}-a^{3}-31a^{2}-4a+22\)
sage: E = EllipticCurve([K([3,4,-9,-2,2]),K([5,0,-7,0,1]),K([2,2,-5,-1,1]),K([20,-2,-29,-4,6]),K([22,-4,-31,-1,5])])
 
gp: E = ellinit([Polrev([3,4,-9,-2,2]),Polrev([5,0,-7,0,1]),Polrev([2,2,-5,-1,1]),Polrev([20,-2,-29,-4,6]),Polrev([22,-4,-31,-1,5])], K);
 
magma: E := EllipticCurve([K![3,4,-9,-2,2],K![5,0,-7,0,1],K![2,2,-5,-1,1],K![20,-2,-29,-4,6],K![22,-4,-31,-1,5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+6a^2+2a-4)\) = \((-a^4+6a^2+2a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 7 \) = \(7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+a^3+5a^2-3a-2)\) = \((-a^4+6a^2+2a-4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -49 \) = \(-7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{392767}{49} a^{4} + \frac{404875}{49} a^{3} - \frac{2995121}{49} a^{2} - \frac{227585}{7} a + \frac{856140}{49} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{2} + a - 2 : -4 a^{3} - 5 a^{2} + 4 a + 2 : 1\right)$
Height \(0.010803535476959427108710217497293164429\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.010803535476959427108710217497293164429 \)
Period: \( 4056.3620096468157769959339707493985037 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.64929060 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+6a^2+2a-4)\) \(7\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 7.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.