Properties

Label 5.5.70601.1-7.1-a1
Base field 5.5.70601.1
Conductor norm \( 7 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-11a^{2}+a+5\right){x}{y}+\left(a^{4}-a^{3}-5a^{2}+2a+2\right){y}={x}^{3}+\left(-a^{4}+a^{3}+4a^{2}-2a-1\right){x}^{2}+\left(-a^{4}-a^{3}+9a^{2}+3a-3\right){x}-2a^{3}+4a^{2}+2a-1\)
sage: E = EllipticCurve([K([5,1,-11,-1,2]),K([-1,-2,4,1,-1]),K([2,2,-5,-1,1]),K([-3,3,9,-1,-1]),K([-1,2,4,-2,0])])
 
gp: E = ellinit([Polrev([5,1,-11,-1,2]),Polrev([-1,-2,4,1,-1]),Polrev([2,2,-5,-1,1]),Polrev([-3,3,9,-1,-1]),Polrev([-1,2,4,-2,0])], K);
 
magma: E := EllipticCurve([K![5,1,-11,-1,2],K![-1,-2,4,1,-1],K![2,2,-5,-1,1],K![-3,3,9,-1,-1],K![-1,2,4,-2,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+6a^2+2a-4)\) = \((-a^4+6a^2+2a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 7 \) = \(7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8a^4+8a^3+41a^2-17a-20)\) = \((-a^4+6a^2+2a-4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -117649 \) = \(-7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3986622664}{117649} a^{4} + \frac{2668349896}{117649} a^{3} + \frac{20834045607}{117649} a^{2} - \frac{162996513}{16807} a - \frac{12309440397}{117649} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a : a^{3} - 2 a^{2} - 3 a + 1 : 1\right)$
Height \(0.032410606430878281326130652491879493287\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.032410606430878281326130652491879493287 \)
Period: \( 1352.1206698822719256653113235831328346 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.64929060 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+6a^2+2a-4)\) \(7\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 7.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.