Properties

Label 5.5.70601.1-49.1-c2
Base field 5.5.70601.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-2a^{3}-9a^{2}+3a+3\right){x}{y}={x}^{3}+\left(-2a^{4}+a^{3}+10a^{2}+a-4\right){x}^{2}+\left(-15a^{4}+12a^{3}+74a^{2}-8a-40\right){x}-33a^{4}+21a^{3}+176a^{2}-10a-106\)
sage: E = EllipticCurve([K([3,3,-9,-2,2]),K([-4,1,10,1,-2]),K([0,0,0,0,0]),K([-40,-8,74,12,-15]),K([-106,-10,176,21,-33])])
 
gp: E = ellinit([Polrev([3,3,-9,-2,2]),Polrev([-4,1,10,1,-2]),Polrev([0,0,0,0,0]),Polrev([-40,-8,74,12,-15]),Polrev([-106,-10,176,21,-33])], K);
 
magma: E := EllipticCurve([K![3,3,-9,-2,2],K![-4,1,10,1,-2],K![0,0,0,0,0],K![-40,-8,74,12,-15],K![-106,-10,176,21,-33]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-5a^2+3a+2)\) = \((-a^4+6a^2+2a-4)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+7a^3+21a^2-33a-16)\) = \((-a^4+6a^2+2a-4)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5764801 \) = \(7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -78417003901 a^{4} + 219037828056 a^{3} - 703259394 a^{2} - 155572879252 a + 43729126161 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(9 a^{4} - 6 a^{3} - 47 a^{2} + 2 a + 29 : 29 a^{4} - 18 a^{3} - 154 a^{2} + 3 a + 96 : 1\right)$
Height \(0.42563057854114048078645037543367705932\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.42563057854114048078645037543367705932 \)
Period: \( 350.41494952014002338796117846122033822 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.80659680 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+6a^2+2a-4)\) \(7\) \(1\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 49.1-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.