Properties

Label 5.5.70601.1-17.1-a2
Base field 5.5.70601.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-10a^{2}+3\right){x}{y}+\left(2a^{4}-2a^{3}-9a^{2}+3a+2\right){y}={x}^{3}+\left(-a^{4}+6a^{2}+a-2\right){x}^{2}+\left(-6a^{4}+a^{3}+36a^{2}+6a-21\right){x}+24a^{4}-19a^{3}-121a^{2}+15a+71\)
sage: E = EllipticCurve([K([3,0,-10,-1,2]),K([-2,1,6,0,-1]),K([2,3,-9,-2,2]),K([-21,6,36,1,-6]),K([71,15,-121,-19,24])])
 
gp: E = ellinit([Polrev([3,0,-10,-1,2]),Polrev([-2,1,6,0,-1]),Polrev([2,3,-9,-2,2]),Polrev([-21,6,36,1,-6]),Polrev([71,15,-121,-19,24])], K);
 
magma: E := EllipticCurve([K![3,0,-10,-1,2],K![-2,1,6,0,-1],K![2,3,-9,-2,2],K![-21,6,36,1,-6],K![71,15,-121,-19,24]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+2)\) = \((-a^2+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2+2)\) = \((-a^2+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -17 \) = \(-17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{541923}{17} a^{4} - \frac{814933}{17} a^{3} + \frac{667123}{17} a^{2} + \frac{563417}{17} a - \frac{220652}{17} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{4} + a^{3} + 5 a^{2} - a - 4 : 4 a^{4} - 2 a^{3} - 22 a^{2} - a + 13 : 1\right)$
Height \(0.041800218866229647583557197360908624441\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.041800218866229647583557197360908624441 \)
Period: \( 2887.0979125818723434319907036591152212 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.27093470 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+2)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 17.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.