Properties

Label 5.5.65657.1-9.1-a1
Base field 5.5.65657.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+2a^{3}+4a^{2}-6a-2\right){x}{y}+\left(-a^{4}+2a^{3}+4a^{2}-5a-3\right){y}={x}^{3}+\left(-2a^{4}+2a^{3}+9a^{2}-6a-6\right){x}^{2}+\left(-45a^{4}+79a^{3}+158a^{2}-211a-53\right){x}-242a^{4}+430a^{3}+867a^{2}-1149a-312\)
sage: E = EllipticCurve([K([-2,-6,4,2,-1]),K([-6,-6,9,2,-2]),K([-3,-5,4,2,-1]),K([-53,-211,158,79,-45]),K([-312,-1149,867,430,-242])])
 
gp: E = ellinit([Polrev([-2,-6,4,2,-1]),Polrev([-6,-6,9,2,-2]),Polrev([-3,-5,4,2,-1]),Polrev([-53,-211,158,79,-45]),Polrev([-312,-1149,867,430,-242])], K);
 
magma: E := EllipticCurve([K![-2,-6,4,2,-1],K![-6,-6,9,2,-2],K![-3,-5,4,2,-1],K![-53,-211,158,79,-45],K![-312,-1149,867,430,-242]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-4a^2+5a+3)\) = \((-a^4+a^3+4a^2-2a-2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-9a^4+11a^3+34a^2-14a-13)\) = \((-a^4+a^3+4a^2-2a-2)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -531441 \) = \(-3^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{346538649913}{729} a^{4} + \frac{304213159354}{243} a^{3} + \frac{131211798509}{729} a^{2} - \frac{95505911702}{81} a - \frac{199860865145}{729} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 23.249546463366264458874501653595796117 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.63322671 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-2a-2)\) \(3\) \(2\) \(I_{6}^{*}\) Additive \(-1\) \(2\) \(12\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 9.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.