Properties

Base field 5.5.65657.1
Label 5.5.65657.1-5.1-b2
Conductor \((5,a^{2} - a - 2)\)
Conductor norm \( 5 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1)
 
gp: K = nfinit(a^5 - a^4 - 5*a^3 + 2*a^2 + 5*a + 1);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\(y^2+\left(-a^{4}+2a^{3}+4a^{2}-5a-2\right)xy+\left(a^{4}-a^{3}-4a^{2}+2a+3\right)y=x^{3}+\left(-2a^{4}+3a^{3}+9a^{2}-10a-8\right)x^{2}+\left(86a^{4}+73a^{3}-426a^{2}-515a-104\right)x+1231a^{4}+500a^{3}-5653a^{2}-5184a-905\)
sage: E = EllipticCurve(K, [-a^4 + 2*a^3 + 4*a^2 - 5*a - 2, -2*a^4 + 3*a^3 + 9*a^2 - 10*a - 8, a^4 - a^3 - 4*a^2 + 2*a + 3, 86*a^4 + 73*a^3 - 426*a^2 - 515*a - 104, 1231*a^4 + 500*a^3 - 5653*a^2 - 5184*a - 905])
 
gp: E = ellinit([-a^4 + 2*a^3 + 4*a^2 - 5*a - 2, -2*a^4 + 3*a^3 + 9*a^2 - 10*a - 8, a^4 - a^3 - 4*a^2 + 2*a + 3, 86*a^4 + 73*a^3 - 426*a^2 - 515*a - 104, 1231*a^4 + 500*a^3 - 5653*a^2 - 5184*a - 905],K)
 
magma: E := ChangeRing(EllipticCurve([-a^4 + 2*a^3 + 4*a^2 - 5*a - 2, -2*a^4 + 3*a^3 + 9*a^2 - 10*a - 8, a^4 - a^3 - 4*a^2 + 2*a + 3, 86*a^4 + 73*a^3 - 426*a^2 - 515*a - 104, 1231*a^4 + 500*a^3 - 5653*a^2 - 5184*a - 905]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((5,a^{2} - a - 2)\) = \( \left(-a^{2} + a + 2\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 5 \) = \( 5 \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((5,a + 3,a^{4} - a^{3} - 4 a^{2} + 2 a + 4,-a^{4} + a^{3} + 5 a^{2} - 3 a - 1,-a^{4} + 2 a^{3} + 4 a^{2} - 6 a + 1)\) = \( \left(-a^{2} + a + 2\right) \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 5 \) = \( 5 \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( -\frac{660212871515640604}{5} a^{4} + \frac{1794053534107468711}{5} a^{3} + \frac{220022592976562427}{5} a^{2} - \frac{1698345910262749894}{5} a - \frac{384439131601574358}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)

sage: E.rank()
 
magma: Rank(E);
 

Regulator: 1

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: Trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{2} + a + 2\right) \) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 5.1-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.