Properties

Label 5.5.65657.1-45.1-e1
Base field 5.5.65657.1
Conductor norm \( 45 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+2a^{3}+5a^{2}-7a-5\right){x}{y}+\left(-a^{4}+2a^{3}+5a^{2}-6a-5\right){y}={x}^{3}+\left(3a^{4}-4a^{3}-13a^{2}+11a+9\right){x}^{2}+\left(-14a^{4}+10a^{3}-3a^{2}+2a-7\right){x}-284a^{4}+587a^{3}+1227a^{2}-1161a-1194\)
sage: E = EllipticCurve([K([-5,-7,5,2,-1]),K([9,11,-13,-4,3]),K([-5,-6,5,2,-1]),K([-7,2,-3,10,-14]),K([-1194,-1161,1227,587,-284])])
 
gp: E = ellinit([Polrev([-5,-7,5,2,-1]),Polrev([9,11,-13,-4,3]),Polrev([-5,-6,5,2,-1]),Polrev([-7,2,-3,10,-14]),Polrev([-1194,-1161,1227,587,-284])], K);
 
magma: E := EllipticCurve([K![-5,-7,5,2,-1],K![9,11,-13,-4,3],K![-5,-6,5,2,-1],K![-7,2,-3,10,-14],K![-1194,-1161,1227,587,-284]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-4a)\) = \((-a^4+a^3+4a^2-2a-2)^{2}\cdot(-a^2+a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 45 \) = \(3^{2}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((35a^4-44a^3-167a^2+169a+157)\) = \((-a^4+a^3+4a^2-2a-2)^{10}\cdot(-a^2+a+2)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -4613203125 \) = \(-3^{10}\cdot5^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{43762711342084459813388}{6328125} a^{4} + \frac{19657683179991310734076}{2109375} a^{3} - \frac{80370595538065362656194}{6328125} a^{2} - \frac{11238856761605347645073}{703125} a - \frac{18641764309297167053009}{6328125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(14 a^{4} - 18 a^{3} - 60 a^{2} + 36 a + 63 : -96 a^{4} + 131 a^{3} + 402 a^{2} - 259 a - 396 : 1\right)$
Height \(0.062194931321517088484134064701320712927\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{4} + \frac{3}{4} a^{3} - 6 a^{2} + \frac{3}{4} a + 8 : \frac{21}{4} a^{4} - \frac{39}{4} a^{3} - \frac{171}{8} a^{2} + \frac{47}{2} a + \frac{159}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.062194931321517088484134064701320712927 \)
Period: \( 365.02757620069662995450080185227836070 \)
Tamagawa product: \( 28 \)  =  \(2^{2}\cdot7\)
Torsion order: \(2\)
Leading coefficient: \( 3.10104590 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-2a-2)\) \(3\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)
\((-a^2+a+2)\) \(5\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 45.1-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.