Properties

Label 5.5.65657.1-37.1-a2
Base field 5.5.65657.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+a^{3}+5a^{2}-3a-4\right){y}={x}^{3}+\left(a^{4}-2a^{3}-4a^{2}+7a+3\right){x}^{2}+\left(49a^{4}-88a^{3}-178a^{2}+239a+64\right){x}+162a^{4}-287a^{3}-588a^{2}+779a+208\)
sage: E = EllipticCurve([K([0,0,0,0,0]),K([3,7,-4,-2,1]),K([-4,-3,5,1,-1]),K([64,239,-178,-88,49]),K([208,779,-588,-287,162])])
 
gp: E = ellinit([Polrev([0,0,0,0,0]),Polrev([3,7,-4,-2,1]),Polrev([-4,-3,5,1,-1]),Polrev([64,239,-178,-88,49]),Polrev([208,779,-588,-287,162])], K);
 
magma: E := EllipticCurve([K![0,0,0,0,0],K![3,7,-4,-2,1],K![-4,-3,5,1,-1],K![64,239,-178,-88,49],K![208,779,-588,-287,162]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-3a^2+3a+2)\) = \((a^4-a^3-3a^2+3a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-17a^4+28a^3+96a^2-101a-107)\) = \((a^4-a^3-3a^2+3a+2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 69343957 \) = \(37^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2507214671425536}{69343957} a^{4} + \frac{3099587870568448}{69343957} a^{3} + \frac{11795529019346944}{69343957} a^{2} - \frac{7777196659007488}{69343957} a - \frac{10702583291781120}{69343957} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-5 a^{4} + 9 a^{3} + 19 a^{2} - 26 a - 7 : 11 a^{4} - 19 a^{3} - 42 a^{2} + 54 a + 16 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1612.7041158955528286071271004262086025 \)
Tamagawa product: \( 5 \)
Torsion order: \(5\)
Leading coefficient: \( 1.25876359 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-3a^2+3a+2)\) \(37\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 37.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.