Properties

Label 5.5.65657.1-225.1-i1
Base field 5.5.65657.1
Conductor norm \( 225 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+a^{3}+5a^{2}-2a-3\right){x}{y}+\left(-a^{4}+2a^{3}+5a^{2}-6a-4\right){y}={x}^{3}+\left(-2a^{4}+2a^{3}+9a^{2}-6a-6\right){x}^{2}+\left(-3a^{4}+3a^{3}+14a^{2}-7a-10\right){x}-2a^{4}+2a^{3}+8a^{2}-5a-6\)
sage: E = EllipticCurve([K([-3,-2,5,1,-1]),K([-6,-6,9,2,-2]),K([-4,-6,5,2,-1]),K([-10,-7,14,3,-3]),K([-6,-5,8,2,-2])])
 
gp: E = ellinit([Polrev([-3,-2,5,1,-1]),Polrev([-6,-6,9,2,-2]),Polrev([-4,-6,5,2,-1]),Polrev([-10,-7,14,3,-3]),Polrev([-6,-5,8,2,-2])], K);
 
magma: E := EllipticCurve([K![-3,-2,5,1,-1],K![-6,-6,9,2,-2],K![-4,-6,5,2,-1],K![-10,-7,14,3,-3],K![-6,-5,8,2,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+6a^2-4a-8)\) = \((-a^4+a^3+4a^2-2a-2)^{2}\cdot(-a^2+a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 225 \) = \(3^{2}\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^3-a^2+7a+11)\) = \((-a^4+a^3+4a^2-2a-2)^{6}\cdot(-a^2+a+2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 18225 \) = \(3^{6}\cdot5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -23437386 a^{4} + 63684350 a^{3} + 7819892 a^{2} - 60287715 a - 13652392 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 269.32976234662822730051665032810097553 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.10219900 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-2a-2)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((-a^2+a+2)\) \(5\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5Ns

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 225.1-i consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.