Properties

Label 5.5.38569.1-43.2-a2
Base field 5.5.38569.1
Conductor norm \( 43 \)
CM no
Base change no
Q-curve no
Torsion order \( 7 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a+1\right){x}{y}+\left(a^{2}+a-1\right){y}={x}^{3}+\left(a^{4}-4a^{2}-a+2\right){x}^{2}+\left(-a+1\right){x}\)
sage: E = EllipticCurve([K([1,-3,0,1,0]),K([2,-1,-4,0,1]),K([-1,1,1,0,0]),K([1,-1,0,0,0]),K([0,0,0,0,0])])
 
gp: E = ellinit([Polrev([1,-3,0,1,0]),Polrev([2,-1,-4,0,1]),Polrev([-1,1,1,0,0]),Polrev([1,-1,0,0,0]),Polrev([0,0,0,0,0])], K);
 
magma: E := EllipticCurve([K![1,-3,0,1,0],K![2,-1,-4,0,1],K![-1,1,1,0,0],K![1,-1,0,0,0],K![0,0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+6a^2+2a-3)\) = \((-a^4+6a^2+2a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43 \) = \(43\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+a^3+4a^2-2a-2)\) = \((-a^4+6a^2+2a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 43 \) = \(43\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{76659}{43} a^{4} + \frac{48039}{43} a^{3} - \frac{312145}{43} a^{2} - \frac{219027}{43} a + \frac{79541}{43} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/7\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 14391.211594037539828815299463651473623 \)
Tamagawa product: \( 1 \)
Torsion order: \(7\)
Leading coefficient: \( 1.49548510 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+6a^2+2a-3)\) \(43\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 43.2-a consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.